8 Algebra CC Zoom \#4 - Unit 15

GRAPHING QUADRATIC FUNCTIONS

Reminders:

$>$ Find the \boldsymbol{x}-coordinate of the vertex (turning point) using the formula, $x=\frac{-b}{2 a}$
$>$ Create a table of values using three \boldsymbol{x}-values smaller than the vertex, and three \boldsymbol{x}-values larger than the vertex.

1. $y=-x^{2}+2 x+5$

\mathbf{x}	\mathbf{y}

2. $y=1 / 2 x^{2}-3$

\mathbf{x}	\mathbf{y}

3. $y=x^{2}+5 x+4$

\mathbf{x}	\mathbf{y}

THE ROOTS OF A QUADRATIC FUNCTION

The "roots" of a parabola are the \boldsymbol{x}-coordinates of the points where the curve intercepts the x-axis. These values are also known as the "zeros" of the function.
A. Identify the x-intercepts of the function in example \# 3 .
x-intercepts: (\qquad , \qquad) \qquad
\qquad)
B. Identify the roots of the function in example \#3.
C. How can we determine the roots algebraically?
D. Identify the roots (zeros) of the function.

Two solutions;
Two roots

One solution;
One root

No solutions; No roots

