Interpreting Expressions

1) Marina burns calories at a rate of 15 calories per minute when running and 6 calories per minute when walking. Suppose she exercises for 60 minutes by running for r minutes and walking for the remaining time. The expression $15 r+6(60-r)$ represents the calories burned during the 60-minute session.
A. What does $15 r$ represent?

The number of calories burned from running.

B. What does 60-rrepresent?

The amount of time Marina spent walking.

C. Kara says that $360+9 r$ is an equivalent expression. Do you agree or disagree? Justify your response.

Yes Justification \#1:

$15 r+6(60-r)$	original expression
$15 r+360-6 r$	distributive property
$360+15 r-6 r$	commutative property of +
$360+9 r$	combine like terms

$15 r+6(60-r)$ original expression
$15 r+360-6 r$ distributive property
$360+9 r \quad$ combine like terms

Justification \#2: Let $\mathrm{r}=\mathbf{2}$

$$
\begin{array}{ll}
15 r+6(60-r) & 360+9 r \\
15(2)+6(60-2) & 360+9(2) \\
30+6(58) & 360+18 \\
30+348 & 378
\end{array}
$$

$$
378
$$

Writing Expressions

2) A. Using an algebraic expression, represent the cost of a dozen balloons plus a 5% tax. Let b represent the cost of a dozen balloons.
b + .05b
The . 05b represents the tax on the dozen balloons. It's added to the cost (b) of the dozen balloons to represent the total cost of a dozen
B. How would you change your expression to find the cost of one balloon?

$$
\frac{\mathbf{b}+. \mathbf{0 5 b}}{\mathbf{1 2}} \text { Divide the denominator by } 12 \text { because the numerator represents the }
$$

C. Find the cost of one balloon including tax if the cost of a dozen balloons is $\$ 10$. Show all work.

$$
\begin{array}{ll}
\frac{10+.05(10)}{12} & \approx 88 ¢ \\
\frac{10+0.5}{12} & \\
\frac{10.5}{12}=0.875 &
\end{array}
$$

Operations with Polynomial Expressions

3) The side of a game cube is represented by $x-4$, as shown at the right. Express the volume of the cube as a simplified polynomial expression in standard form.
Helpful Hint: To find the volume of a cube, use the formula $V=s^{3}$

$$
\begin{aligned}
& V=s^{3} \\
& (x-4)^{3} \\
& (x-4)(x-4)(x-4)
\end{aligned}
$$

Multiply the first two binomials

(x ィ1\%. 1)			
x^{2}		\mathbf{x}	-4
x^{2}	x^{2}	x^{3}	$-4 x^{2}$
	-8x	$-8 x^{2}$	32 x
(x	16	$16 x$	-64

$x^{3}-4 x^{2}-8 x^{2}+32 x+16 x-64$
volume $=x^{3}-12 x^{2}+48 x-64$ cubic units
4) Represent the length of the missing side of the quadrilateral shown below as a simplified polynomial expression in standard form if the perimeter is $5 x^{2}+2 x+1$.

Perimeter: $5 x^{2}+2 x+1$
To find the missing side, subtract the sum of the three sides from the perimeter.
$\left(5 x^{2}+2 x+1\right)-\left(\left(3 x^{2}-5 x\right)+\left(2 x^{2}+x-1\right)+\left(4 x^{2}\right)\right)$
$\left(5 x^{2}+2 x+1\right)-\left(9 x^{2}-4 x-1\right)$
$5 x^{2}+2 x+1-9 x^{2}+4 x+1$ distributed the - sign
$5 x^{2}-9 x^{2}+2 x+4 x+1+1$ combine like terms

$-4 x^{2}+6 x+2$ units

Check

$$
\begin{aligned}
& -4 x^{2}+6 x+2 \\
& 3 x^{2}-5 x \\
& 2 x^{2}+x-1 \\
& +4 x^{2} \\
& \hline 5 x^{2}+\mathbf{2 x}+1
\end{aligned}
$$

All four sides sum $5 x^{2}+2 x+1$

