Vocabulary:

natural numbers
whole numbers
integers
rational numbers
irrational numbers
real numbers
real numbers
repeating decimal
nonrepeating-nonterminating decimal
absolute value

simplify
evaluate
numerical expression
algebraic expression
commutative
associative
distributive
additive inverse
multiplicative inverse

identity
undefined
imaginary
radical symbol
radicand
index
perfect square
perfect cube

What should I be able to do?

- 1. Know what numbers belong/do not belong in a set
- 2. Perform operations with rational numbers
- 3. Simplify numerical expressions and evaluate algebraic expressions using the order of operations (PEMDAS) and showing all work in "good form"
- 4. Know the difference between -5^2 and $(-5)^2$
- 5. Know when to use parentheses when substituting a numerical value for a variable
- 6. Recognize/give an example of any property
- 7. Know when an expression is undefined
- 8. Simplify radical expressions

PRACTICE PROBLEM SET

Always/Sometimes/Never

- 1. If x is an integer, then -x is a negative number. $x \neq 0$
- 2. If x is negative and y is positive, then y x is positive.
- 3. The difference of two integers is an integer.
- 4. An integer is a whole number.
- 5. |x| = |-x|

True/False

6. 5 + 0 = 5 is an example of the additive inverse property.

7.
$$|-9+3|=12$$

8. Zero is a natural number.

9.
$$(-6)^3 = -6^3$$

10.
$$-\frac{3}{5} > -\frac{2}{7}$$

11. The set of odd integers is closed under addition.

12.
$$\sqrt{81} = \sqrt[3]{27}$$

Fill in the correct answer.

13. Complete the statement so that it is true and name the property. -(2+3) = -2 + ?

14. Complete the statement so that it is true and name the property. $7 \cdot ? = 7$

15. Find a value for both x and y that make (-x)(-y) negative.

16. Find a value of y that makes $-y^2 = 9$

17. Complete the statement so that the product is a natural number. $-\frac{2}{3} \cdot ? =$

Perform the indicated operation.

18.
$$-\frac{1}{4} + 3$$

18.
$$-\frac{1}{4} + 3$$
 19. $-2 - 4 + 7$ 20. $4 - (-5)(8)$

Simplify each expression showing all work in "good form".

23.
$$\sqrt{72}$$

$$24. -2\sqrt{250a^3b^4}$$

25.
$$\left(3\frac{1}{4}-2\right) \div 5-8$$

26.
$$-18 + 6^2 \div 4 \cdot 7 - 5$$

27.
$$\left(\frac{1}{8} \div \frac{1}{8}\right)^2 + \frac{1}{8} \cdot \frac{1}{8} - \frac{1}{16}$$

28.
$$0.02[26 - 20(0.64 + 0.3)]$$

Evaluate each expression showing all work in "good form". Let x = -4, y = 6 and z = -3

29.
$$82 - 4x^3y$$

$$30. \ \frac{2(x-y)}{y-z}$$

31.
$$-7 + \frac{3x}{7}$$

32.
$$-\frac{x}{z} - 9$$

Evaluate each expression showing all work in "good form". Let $a = \frac{2}{3}$, $b = -\frac{1}{5}$ and c = -4

33.
$$(ac) \div (ab)$$

34.
$$6(2a+b+\frac{1}{2}c)$$