Algebra RH

Unit 16 Check-In (Other Functions)

Types of "Other" Functions

Cubic $f(x)=x^{3}$
Cube Root $f(x)=\sqrt[3]{x}$
Absolute Value $f(x)=|x|$ Square Root $f(x)=\sqrt{x}$

"The Big 3"

Linear: $y=m x+b$
Exponential: $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{b}^{\boldsymbol{x}}$
Quadratic: $y=a x^{2}+b x+c$

Practice Problem Set

1. Determine if the following tables represent linear, quadratic or exponential functions. Justify using differences or ratios.
A.
exponential
common
ratio

x	$f(x)$	is 3
-1	$\frac{2}{3}$	
0	2	2
1	6	2
2	18	$\times 3$
2		

B.
quadratic common
$\left.\begin{array}{|c|c|}\hline x & f(x) \\ \hline-3 & 37 \\ \hline-2 & 21 L^{*}-16 \\ \hline-1 & 9 \\ \hline 0 & 1 \\ \hline\end{array}\right)+4$
second
difference is 4
2. The following data was recorded for NY Coronavirus Hospitalizations.

Day	10	15	18	23	28	35	40	45	51
Cases	489	1265	1925	3181	2945	2156	1408	1076	789

a. Enter the data into your calculator, look at the scatter plot and give a quick sketch for the data

$$
\begin{aligned}
& \text { go to } y= \\
& \text { move up to PLOT } \\
& \text { press enter to highlight } \\
& \text { then } \\
& \text { ZOOM \#9 }
\end{aligned}
$$

b. Write a regression model that best fits the data. Round all values to the nearest tenth. directions use the quadratic regression model

$$
a=-5.1
$$

(sketch shows increase, then decrease)

$$
\begin{aligned}
& b=298.8 \\
& c=-1811.7
\end{aligned}
$$

$$
S T A T \rightarrow C A L C \rightarrow \# 5
$$

$$
y=-5.1 x^{2}+298.8 x-1811.7
$$

then keep pressing enter until a, b, c appear
3. Solve each equation for x
a. $|4 x-1|=x-7$
b. $3 \sqrt{x+7}+2=17$
c. $(x-7)^{2}+1=10$
d. $\sqrt[3]{x+1}=2$
$4 x-1=x-7$ or $4 x-1=-x+7 \quad 3 \sqrt{x+7}=15$
$(x-7)^{2}=9$

$$
\left.\begin{array}{ccc}
3 x=-6 & \downarrow & 5 x=8
\end{array}\right) \sqrt{x+7}=5
$$

$$
\sqrt{(x-7)^{2}}= \pm \sqrt{9}
$$

$$
(\sqrt[3]{x+1})^{3}=2^{3}
$$

$$
x+1=8
$$

$$
x-7= \pm 3
$$

$$
x=7 \pm 3
$$

4. State the domain of the function $f(x)=\sqrt{10-x}$

$$
x=7+3,7-3
$$

x values
$10-x \geq 0$
$x=10,4$
radicand ≥ 0

$$
\begin{aligned}
-x & \geq-10 \\
x & \leq 10
\end{aligned}
$$

5. Given the parent function $f(x)=|x|$, describe the transformation to the new equation $g(x)=-\frac{3}{2}|x+9|-5$. reflection over the x-ax is
$a=1.5$
(greater.
than 1)
vertical stretch by a factor of $\frac{3}{2}$
horizontal shift qunits left
vertical shift 5 units down
6. Write an equation for each graph below.

Equation: $\quad y=-3(x+1)^{3}+5$
parent graph: $y=x^{3}$
origin point moved 1 to the left and 5 up
$y=a(x+1)^{3}+5$
a point from the graph: $(-2,8)$
$8=a(-2+1)^{3}+5$ $8=-a+5$
Equation:

$$
\begin{gathered}
3=-a \\
a=-3
\end{gathered}
$$

$y=-\frac{1}{4}|x|-6$
work to get this equation

$$
y=a|x|-b
$$

1 used point $(4,-7)$

$$
-7=a|H|-6
$$

$$
-1=4 a
$$

$$
a=-\frac{1}{4}
$$

7. Determine the average rate of change for the function $f(x)=\sqrt[3]{x+8}$ over the interval $-7 \leq x \leq 0$.
$\frac{\Delta y}{\Delta x}=\frac{2-1}{0-(-7)}=\frac{1}{7}$

x	y
-7	1
0	2

8. Write the equation of a square root function that has been vertically stretched by a factor of 7 and translated 9 units down and 14 units right.
subtract 9 in back subtract 14 inside multiply by 7 in the front

$$
y=7 \sqrt{x-14}-9
$$

9. Given the following quadratic function, $g(x)=-3 x^{2}-24 x+5$, determine the transformations that were applied to the parent function $f(x)=x^{2}$ Must put in vertex form first? $y=-3 x^{2}-24 x+5$

$$
\begin{gathered}
y-5=-3 x^{2}-24 x \\
y-5=-3\left(x^{2}+8 x+16\right) \\
-48 \\
y-53=-3(x+4)^{2} \\
y=-3(x+4)^{2}+53
\end{gathered}
$$

reflection over the x-axis vertical stretch by a factor of 3 horizontal shift 4 units left vertical shift 53 units up
10. Graph $g(x)$ and $h(x)$ on each coordinate plane below. State the domain and range of $g(x)$. Describe the transformation of $g(x)$ as compared to the parent function $h(x)$.

$$
h(x)=\sqrt{x}
$$

$$
g(x)=-2 \sqrt{x+1}
$$

$g^{(x)}$ range: $\frac{[-1, \infty)}{\text { domain: }(-\infty, 0]} \frac{x \geq-1}{y \leq 0}$

$$
\begin{aligned}
& h(x)=\sqrt[3]{x} \\
& g(x)=\sqrt[3]{x-2}+3
\end{aligned}
$$

transformation reflection over the x-axis vertical stretch by a factor of 2 horizontal shift I unit left

2 units right vertical shift
11. Algebraically determine the transformation from $f(x)=x^{2}-10 x+2$ to $g(x)=-x^{2}+4 x-7$ change to vertex form and determine the change horizontal shift 3 units left $\leftrightarrow y-2=\left(x^{2}-10 x+25\right)$ vertical shift 20 units up

$$
\begin{aligned}
& y+25=(x-5)^{2} \\
& y=(x-5)^{2}-23
\end{aligned}
$$

12. a. Graph the function $f(x)=\frac{1}{2}|x-3|$. create a table of values and graph
or sketch the parent
absolute value function
and show the
transformation to each
point (y value multiplied
by $\frac{1}{2}, x$ value adds 3)
b. State the domain and range of $f(x)$. domain: $(-\infty, \infty) \longrightarrow[0, \infty)$

x	y
-5	4
1	1
3	0
5	1
7	2
9	3

c. State the interval over which the function is increasing. State the interval over which the function is decreasing. $\longrightarrow x$ values look at the x value of the vertex and increasing: \qquad compare the values of the other x coordinates decreasing: \qquad
13. The graph of a transformation of the function $f(x)=x^{2}$ is shown. The transformation shown can be expressed in the form $\boldsymbol{y}=p[f(x+r)]+n$, where p, r and n are constants. Determine the values of each:
$p=-2$
Y you can write the function
\} in vertex form and use a $r=-1\{$ point to help find a $f(x)=a(x-1)^{2}+3$
$n=3$

$$
\text { use }(0,1)
$$

$$
1=a(0-1)^{2}+3
$$

$$
1=1 a+3
$$

$$
-2=a
$$

