STATION \#1 FUNCTIONS - ANSWER KEY

1) If $f(x)=2 \sqrt{x+3}$, find the value of $f(61)$.

$$
\begin{aligned}
& f(61)=2 \sqrt{61+3} \\
& f(61)=2 \sqrt{64} \\
& f(61)=2 \bullet 8 \\
& f(61)=16
\end{aligned}
$$

2) Find x in the function $m(x)=-\frac{1}{2} x+8$ if $m(x)=16$.

$$
\begin{aligned}
& 16=-\frac{1}{2} x+8 \\
& 8=-\frac{1}{2} x \\
& -16=x
\end{aligned}
$$

3) If $f(x)=3 x^{2}-2$ and $g(x)=5 x+1$, find the value of $f(g(-2))$.

$$
\begin{aligned}
& g(-2)=5(-2)+1 \\
& g(-2)=-9 \\
& f(-9)=3(-9)^{2}-2 \\
& f(-9)=241 \\
& f(g(-2))=241
\end{aligned}
$$

4) The water park charges $\$ 125$ for a birthday party. Guests cost \$12 each.
(a) Write a linear model that represents the total cost

$$
C(g)=125+12 g
$$ of a birthday party, $C(g)$ as a function of the number of guests, g.

(b) Find $C(5)$. What is the meaning of $C(5)$ in the context of this situation?

$$
\begin{aligned}
& C(5)=125+12(5) \\
& C(5)=185
\end{aligned}
$$

A birthday party for 5 guests costs $\mathbf{\$ 1 8 5}$.
(c) How many guests are able to attend if the water park charges $\$ 341$ for a birthday party?

$$
\begin{aligned}
& 341=125+12 g \\
& 216=12 g \\
& 18=g
\end{aligned}
$$

18 guests would cost $\$ 341$.

STATION \#2
 ARITHMETIC SEQUENCES - ANSWER KEY

1) What is the common difference for the following sequences?
(a) $16,11.75,7.5,3.25, \ldots$
(b) $x-5,4 x-5,7 x-5, \ldots$

$$
\begin{aligned}
& 4 x-5-(x-5) \\
& 4 x-5-x+5 \\
& d=3 x
\end{aligned}
$$

2) Each term in a sequence of numbers is 5 less than the previous term. If the second term of the sequence is 21 , write the equation that can be used to find the $n^{\text {th }}$ term of the sequence.
3) The volume (in cubic feet) of the water in a tank each hour after turning on a faucet can be estimated by the sequence in the table.
(a) Write a function that represents the

It would take 9 hours to fill the tank.

$$
\begin{aligned}
& d=-5 \\
& a_{1}=26(21+5)
\end{aligned}
$$

$$
a_{\mathrm{n}}=26-5(n-1)
$$

Time after turning on faucet (in hours)	1	2	3	4
Volume (cubic feet)	12	15	18	21

arithmetic sequence.
(b) If the tank has a capacity of 36 cubic feet, find the amount of time needed to fill the tank.
\qquad

\[

\]

4) After a rock concert ends, the number of people that still remain in the stadium after n minutes is displayed by the table below.

| Minutes n | 1 | 2 | 3 | 4 |
| :--- | :--- | :---: | :---: | :---: | :---: |
| People $a(n)$ | 10,456 | 9,954 | 9,452 | 8,950 |

(a) Write an explicitrule that models the table.

$$
a(n)=10456-502(n-1)
$$

(b) If the pattern continues, how many people will be in the stadium 14 minutes after the concert ends?

$$
\begin{aligned}
& a(14)=10456-502(14-1) \\
& a(14)=3930 \text { people }
\end{aligned}
$$

(c) How many minutes have gone by if there are 6,942 people in the stadium?

$$
\begin{aligned}
& 6942=10456-502(n-1) \\
& 6942=10456-502 n+502 \\
& 6942=10958-502 n \\
& -4016=-502 n \\
& n=8 \text { minutes }
\end{aligned}
$$

STATION \#3
 GEOMETRIC SEQUENCES - ANSWER KEY

1) What is the common ratio for the following sequence? $-\frac{2}{5}, \frac{1}{10},-\frac{1}{40}, \ldots$

$$
\begin{aligned}
& \frac{1}{10} \div-\frac{2}{5} \\
& \frac{1}{10} \bullet-\frac{5}{2}=-\frac{1}{4} \\
& r=-1 / 4
\end{aligned}
$$

2) Write the 8th term of the geometric sequence where $a_{1}=24$ and $r=-\frac{1}{2}$.

$$
\begin{aligned}
& a_{n}=24\left(-\frac{1}{2}\right)^{n-1} \\
& a_{8}=24\left(-\frac{1}{2}\right)^{8-1} \\
& a_{8}=-0.1875
\end{aligned}
$$

3) An archery competition begins with 256 competitors. After the first round, onefourth of the competing group remains. After the second round, one-fourth of the now smaller competing group remains. The last round is when there are fewer than five members in the competing group.
(a) Define the sequence explicitly. $\quad r=1 / 4 \quad a_{1}=64(256 \cdot 1 / 4)$

$$
a_{n}=64\left(\frac{1}{4}\right)^{n-1}
$$

(b) Which round is the last round? How many competitors are in the last round?

The last round is the third round with 4 competitors.

n	a_{n}
1	64
2	16
3	4

4)

Number of Years, n	1	2	3	4
Money in Account, $a(n)$	$\$ 550$	$\$ 605$	$\$ 665.50$	$\$ 732.05$

(a) Write an explicit rule that defines the sequence displayed by the table.

$$
\begin{array}{l|l}
\hline r=1.1(605 / 550) \quad a_{1}=550 \\
\cline { 1 - 1 }(n)=550(1.1)^{n-1} &
\end{array}
$$

(b) If the pattern continues, how much money will be in the account after 5 years?

$$
\begin{aligned}
& a(5)=550(1.1)^{5-1} \\
& a(5)=805.255
\end{aligned}
$$

The account will have $\$ 805.26$ after 5 years.

STATION \#4
 IS IT ARITHMETIC OR GEOMETRIC? ANSWER KEY

1) Which sequence of numbers listed below displays a geometric sequence?
(a) $-9.5,-8.25,-7,-5.75, \ldots$

$$
d=-1.25
$$

(b) $-11,-5.5,-2.75,-1.375, \ldots$

$$
r=0.5
$$

2) Determine if the sequence is arithmetic or geometric and identify the next term in the sequence.
$r=0.4$ geometric
$\mathbf{0 . 4} \cdot \mathbf{0 . 0 4 8}=\mathbf{0 . 0 1 9 2}$
$0.75,0.3,0.12,0.048, \ldots$
3) A sequence has the following terms: $a_{1}=6, a_{2}=9, a_{3}=13.5, a_{4}=20.25$. Which formula represents the $n^{\text {th }}$ term in the sequence?

$$
a_{1}=6 \quad r=1.5(9 / 6)
$$

A) $a_{n}=6+1.5 n$
C) $a_{n}=6(1.5)^{n}$
B) $a_{n}=6+1.5(n-1)$
(D) $a_{n}=6(1.5)^{n-1}$
4) Write an explicit formula for the $n^{\text {th }}$
term of the sequence shown below?
$a_{n}=-11,-2,7,16, \ldots$

$$
\begin{aligned}
& d=9 \\
& a_{1}=-11
\end{aligned}
$$

$$
a_{\mathrm{n}}=-11+9(n-1)
$$

5) A pattern of dots is shown below.

If the pattern of dots continues, which formula(s) can be used to determine the number of dots in the $n^{\text {th }}$ group?

II

$a(n)=8+3 n$

First Group -. • •

8

III
$a(n)=5+3 n$

Second Group
.

11
14
.

$$
a(1)=8 \quad d=3
$$

STATION \#5
 RECURSIVE SEQUENCES - ANSWER KEY

1) Which of these sequences cannot be modeled with an explicit formula?
A) $17,23,29,35, \ldots$
(B)) $8,11,17,29, \ldots$
C) $3,12,48,192, \ldots$
$d=6$
no common difference or common ratio

$$
r=4
$$

2) Which recursively defined sequence has a first term equal to 4 and a common ratio of 9 ?
A) $f(1)=9 ; f(n)=f(n-1)+4$
C) $f(1)=9 ; f(n)=4 f(n-1)$
B) $f(1)=4 ; f(n)=f(n-1)+9$
(D) $f(1)=4 ; f(n)=9 f(n-1)$
3) The recursive rule for a sequence is $a_{1}=-2, a_{\mathrm{n}}=a_{\mathrm{n}-1}-4$. Write the explicit rule for the same sequence. $\quad a(n)=-2-4(n-1)$
4) A sequence is defined recursively by $f(1)=40$ and $f(n)=\frac{1}{4} f(n-1)+2$. Write out the next 3 terms of the sequence.

$$
\begin{aligned}
& f(n)=\frac{1}{4} f(n-1)+2 \\
& f(2)=\frac{1}{4} f(1)+2 \rightarrow f(2)=\frac{1}{4}(40)+2 \rightarrow f(2)=12 \\
& f(3)=\frac{1}{4} f(2)+2 \rightarrow f(3)=\frac{1}{4}(12)+2 \rightarrow f(3)=5 \\
& f(4)=\frac{1}{4} f(3)+2 \rightarrow f(4)=\frac{1}{4}(5)+2 \rightarrow f(4)=3.25
\end{aligned}
$$

The next 3 terms are 12,5 and 3.25.

