STATION \#1
 ARITHMETIC AND GEOMETRIC SEQUENCES

ARITHMETIC SEQUENCES

1) What is the common difference for the following sequence? $14,12.25,10.5,8.75, \ldots$
2) Each term in a sequence of numbers is 7 less than the previous term. If the second term of the sequence is 28 , write the equation that can be used to find the nth term of the sequence.

GEOMETRIC SEQUENCES

3) What is the common ratio for the following sequence? $-\frac{2}{5}, \frac{1}{10},-\frac{1}{40}, \ldots$
4) Which sequence of numbers listed below displays a geometric sequence?
a) $-9.5,-8.25,-7,-5.75, \ldots$
b) $-11,-5.5,-2.75,-1.375, \ldots$
5) Write the first four terms of the geometric sequence, given $a_{1}=18$ and $r=-\frac{1}{2}$

STATION \#2
 IS IT ARITHMETIC OR GEOMETRIC?

1) Determine if the sequence is arithmetic or geometric and identify the next term in the sequence.

$$
0.75,0.3,0.12,0.048, \ldots
$$

2) Find the 17 th term of the following sequence: $13,17,21,25, \ldots$
3) A sequence has the following terms: $a_{1}=6, a_{2}=9, a_{3}=13.5, a_{4}=20.25$. Which formula represents the $n^{\text {th }}$ term in the sequence?
A) $a_{n}=6+1.5 n$
B) $a_{\mathrm{n}}=6+1.5(\mathrm{n}-1)$
C) $a_{n}=6(1.5)^{n}$
D) $a_{n}=6(1.5)^{\mathrm{n}-1}$
4) Write an explicit formula for the nth term of the sequence shown below?

$$
a_{\mathrm{n}}=-11,-2,7,16, \ldots
$$

STATION \#3

IS IT ARITHMETIC OR GEOMETRIC?

1) A pattern of dots is shown below.
First Group
-•••
Second Group
-•••
-•••••• ••
Third Group
-••••••• ••••

If the pattern of dots continues, which formula(s) can be used to determine the number of dots in the nth group?

$$
\begin{array}{ccc}
\text { | } & \text { II } & \text { III } \\
a(n)=8+3(n-1) & a(n)=8+3 n & a(n)=5+3 n
\end{array}
$$

2)

Number of Years \boldsymbol{n}	1	2	3	4
Money in Account $\boldsymbol{a}(\boldsymbol{n})$	$\$ 550$	$\$ 605$	$\$ 665.50$	$\$ 732.05$

a) Write an explicit rule that defines the sequence displayed by the table.
b) If the pattern continues, how much money will be in the account after 5 years?
c) The person who is saving money can go on a world trip when the balance in the account reaches at least $\$ 1000$. In how many years can the person go on the trip?
3) After a rock concert ends, the number of people that still remain in the stadium after \boldsymbol{n} minutes is displayed by the table below.

Minutes \boldsymbol{n}	1	2	3	4
People $\boldsymbol{a}(\boldsymbol{n})$	10,456	9,954	9,452	8,950

a) Write an explicit rule that models the table.
b) If the pattern continues, how many people will be in the stadium 14 minutes after the concert ends?
c) How many minutes have gone by if there are 6,942 people in the stadium?

STATION \#4
 RECURSIVE SEQUENCES

1) Which of these sequences cannot be modeled with an explicit formula?
A) $17,23,29,35, \ldots$
B) $8,11,17,29, \ldots$
C) $3,12,48,192, \ldots$
2) A sequence is defined recursively by $a(1)=72$ and $a(\mathrm{n})=5 a(\mathrm{n}-1)-11$. How is the second term generated?
A) Multiply 71 by 5 and add 11 .
B) Multiply 72 by 5 and subtract 11 .
C) Multiply -1 by 5 and subtract 11 .
3) Find the first four terms of the recursive sequence defined by:

$$
a_{1}=-2 ; \quad a_{n}=3 a_{n-1}-4
$$

4) Which recursively defined sequence has a first term equal to 4 and a common ratio of 9 ?
A) $f(1)=9 ; f(n)=f(n-1)+4$
B) $f(1)=4 ; f(\mathrm{n})=f(\mathrm{n}-1)+9$
C) $f(1)=9 ; f(n)=4 f(n-1)$
D) $f(1)=4 ; f(n)=9 f(n-1)$
5) If $f(1)=4$ and $f(\mathrm{n})=\frac{1}{4} f(\mathrm{n}-1)+8$, then find the value of $f(3)$.
