STATION #1 ARITHMETIC AND GEOMETRIC SEQUENCES

ARITHMETIC SEQUENCES

- 1) What is the *common difference* for the following sequence? 14, 12.25, 10.5, 8.75, ...
- 2) Each term in a sequence of numbers is 7 less than the previous term. If the second term of the sequence is 28, write the equation that can be used to find the *n*th term of the sequence.

GEOMETRIC SEQUENCES

3) What is the *common ratio* for the following sequence? $-\frac{2}{5}, \frac{1}{10}, -\frac{1}{40}, \dots$

4) Which sequence of numbers listed below displays a geometric sequence?

a) -9.5, -8.25, -7, -5.75, ... b) -11, -5.5, -2.75, -1.375, ...

5) Write the first four terms of the geometric sequence, given $a_1 = 18$ and $r = -\frac{1}{2}$

STATION #2 IS IT ARITHMETIC OR GEOMETRIC?

1) Determine if the sequence is *arithmetic* or *geometric* and identify the next term in the sequence.

```
0.75, 0.3, 0.12, 0.048, ...
```

- 2) Find the 17th term of the following sequence: 13, 17, 21, 25, ...
- 3) A sequence has the following terms: $a_1 = 6$, $a_2 = 9$, $a_3 = 13.5$, $a_4 = 20.25$. Which formula represents the n^{th} term in the sequence?

A) $a_n = 6 + 1.5n$ C) $a_n = 6(1.5)^n$

B) $a_n = 6 + 1.5(n - 1)$ D) $a_n = 6(1.5)^{n-1}$

4) Write an *explicit* formula for the *n*th term of the sequence shown below?

STATION #3 IS IT ARITHMETIC OR GEOMETRIC?

1) A pattern of dots is shown below.

First Group	Second Group	Third Group	
• • • •	• • • • • •	• • • • • • •	
• • • •	• • • • •		

If the pattern of dots continues, which formula(s) can be used to determine the number of dots in the *n*th group?

a(n) =
$$8 + 3(n - 1)$$

a(n) = $8 + 3n$
a(n) = $5 + 3n$

2)	Number of Years n	1	2	3	4
	Money in Account a(n)	\$550	\$605	\$665.50	\$732.05

- a) Write an *explicit* rule that defines the sequence displayed by the table.
- b) If the pattern continues, how much money will be in the account after 5 years?
- c) The person who is saving money can go on a world trip when the balance in the account reaches at least \$1000. In how many years can the person go on the trip?
- 3) After a rock concert ends, the number of people that still remain in the stadium after *n* minutes is displayed by the table below.

Minutes <i>n</i>	1	2	3	4
People <i>a</i> (<i>n</i>)	10,456	9,954	9,452	8,950

- a) Write an *explicit* rule that models the table.
- b) If the pattern continues, how many people will be in the stadium 14 minutes after the concert ends?
- c) How many minutes have gone by if there are 6,942 people in the stadium?

STATION #4 RECURSIVE SEQUENCES

- 1) Which of these sequences *cannot* be modeled with an *explicit* formula?
 - A) 17, 23, 29, 35, ... B) 8, 11, 17, 29, ... C) 3, 12, 48, 192, ...
- 2) A sequence is defined recursively by a(1) = 72 and a(n) = 5a(n-1) 11. How is the second term generated?
 - A) Multiply 71 by 5 and add 11.
 - B) Multiply 72 by 5 and subtract 11.
 - C) Multiply -1 by 5 and subtract 11.
- 3) Find the first four terms of the recursive sequence defined by:

$$a_1 = -2$$
; $a_n = 3a_{n-1} - 4$

- 4) Which recursively defined sequence has a first term equal to 4 and a common ratio of 9?
 - A) f(1) = 9; f(n) = f(n-1) + 4C) f(1) = 9; f(n) = 4f(n-1)
 - B) f(1) = 4; f(n) = f(n-1) + 9D) f(1) = 4; f(n) = 9f(n-1)

5) If
$$f(1) = 4$$
 and $f(n) = \frac{1}{4} f(n-1) + 8$, then find the value of $f(3)$.