Let's work together.

 \bigcirc

1. Given the function \boldsymbol{g} defined by $\boldsymbol{g}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}-\mathbf{4}$, find the following:
(a) $g(-3)$
(b) $g(0)$

$$
\begin{aligned}
g(-3) & =(-3)^{2}-4 \\
& =9-4 \\
& =5 \\
g(-3) & =5 \quad(-3,5)
\end{aligned}
$$

$$
\begin{aligned}
g(0) & =(0)^{2}-4 \\
& =0-4 \\
& =-4 \\
g(0) & =-4 \quad(0,-4)
\end{aligned}
$$

2. Using the function rule $\boldsymbol{h}(\mathbf{x})=\mathbf{1 5}-\frac{\mathbf{3}}{\mathbf{2}} \mathbf{x}$, find the value of x when $h(\mathrm{x})=24$.

Replace $h(\mathrm{x})$ with 24
$24=15-\frac{3}{2} x \quad 9=-\frac{3}{2} x$
-15 -15
$9=-\frac{3}{2} x$
$\left(-\frac{\mathbf{2}}{\mathbf{3}}\right)(9)=\left(-\frac{3}{2}\right)\left(-\frac{\mathbf{2}}{\mathbf{3}}\right) \mathrm{x}$
$-6=x \quad$ The value of x is -6
3. If the function $f(x)=\mathbf{2 x - 3}$ and $\boldsymbol{g}(\mathbf{x})=\frac{\mathbf{3}}{\mathbf{2}} \mathbf{x + 1}$ then which of the following is a true statement?
(1) $f(0)>g(0)$
(3) $f(2)=g(2)$
(2) $f(8)=g(8)$
(4) $g(4)<f(4)$

View the table of values of each function.

\mathbf{x} (input)	$\boldsymbol{f}(\mathbf{x})$ (output)	$\boldsymbol{g}(\mathbf{x})$ (output)
0	-3	1
2	1	4
4	5	7
8	13	13

4. Given the function f defined by $f(x)=3 \mathbf{x}^{2}-\mathbf{4}$, which statement is true?
(1) $f(0)=0$ $f(0)=3(0)^{2}-4$
$=-4$ False
(3) $x=5$ when $f(x)=75$
$f(5)=3(5)^{2}-4$

$$
=75-4
$$

$$
=71 \text { False }
$$

(2) $f(-2)=f(2)$
$f(-2)=3(-2)^{2}-4$

$$
=8
$$

$$
f(2)=3(2)^{2}-4
$$

$$
=8 \quad \text { True }
$$

(4) $f(5) \cdot f(2)=f(10)$

$$
f(5)=71
$$

$$
f(2)=8
$$

$$
f(10)=296
$$

8 * $71=568$
$568 \neq 296$ False

You can also view a table of values to compare outputs given inputs.
Just enter $3 x^{2}-4$ into y_{1}.

\mathbf{x} (input)	$\boldsymbol{f}(\mathbf{x})$ (output)
-2	8
0	-4
2	8
5	71
10	296

5. Officials in a town use a function, P to analyze traffic patterns. $\boldsymbol{P}(\boldsymbol{n})$ represents the rate of traffic through an intersection where \boldsymbol{n} is the number of observed vehicles in a specified time interval. What would be the most appropriate domain for the function?
(1) the set of real numbers
(3) the set of whole numbers $\{0,1,2,3 \ldots\}$
cannot have a negative amount of vehicles or a fraction of a vehicle
6. Amy is purchasing t-shirts for her softball team. A local company has agreed to make the shirts for $\$ 9$ each with a one-time $\$ 85$ charge for graphic designs.
(a) Write a function rule in function notation that describes the cost, \boldsymbol{C}, for the shirts in terms of \boldsymbol{q}, the quantity ordered.
C: total cost of shirts

$$
C(q)=9 q+85
$$

q: the number of shirts purchased
(b) Find the cost of ordering 20 t-shirts.
$C(q)=9 q+85$

$$
\begin{aligned}
C(20) & =9(20)+85 \\
& =180+85
\end{aligned}
$$

$$
=265 \quad \text { The cost of ordering } 20 \text { t-shirts is } \$ 265
$$

(c) If the softball team has $\$ 450$, how many t-shirts can they purchase?
$C(q)=9 q+85$
$450=9 q+85$
$365=9 q$
40.555... = q

The maximum number of t -shirts that can be purchased is 40 .

Check:

$85+9(40)=\$ 445$
\$445 < \$450 It checks
$85+9(41)=\$ 454$
\$454 > \$450-too expensive
7. The function $\mathbf{y}=\boldsymbol{r}(\mathbf{x})$ represents the radius of a circle for a given area, \mathbf{x}. A graph of the function is shown in this figure. Using the graph, complete a and b.

(a) Find $r(7)$. Explain the meaning of this value in the context of the situation.
Input: 7 Output: 1.5 (see graph)
When a circle has an area of 7 square feet, the radius of the circle is 1.5 feet.
(b) Find the value of x to the nearest integer if $r(\mathrm{x})=1.25$.

Output: 1.25 Input: 5 (see graph)
If the radius of a circle is 1.25 feet then the area is 5 square feet.

PIPS Question:

Given the function f defined by $f(x)=\frac{\mathbf{1}}{\mathbf{2}} x-5$, the function h is defined by $h(x)=4 f(x)$.
(a) Find $h(6)$

Find $f(6)$ and multiply it by 4 to get $h(6)$

$$
\begin{array}{rlrl}
f(6) & =1 / 2(6)-5 & h(x) & =4 f(\mathrm{x}) \\
& =3-5 & h(6) & =4 f(6) \\
& =-2 & & =4(-2) \\
& & =-8
\end{array}
$$

$$
h(6)=-8
$$

$$
\begin{aligned}
& \frac{\text { 2 }^{\text {nd }} \text { Option: }}{\text { Define } h(x) .} \\
& h(x) \text { is } 4 \text { times } f(x) \\
& h(x)=4(1 / 2 x-5) \text { therefore } \begin{aligned}
h(x) & =2 x-20 \\
h(6) & =2(6)-20 \\
h(6) & =-8
\end{aligned}
\end{aligned}
$$

(b) If function g is defined as $\boldsymbol{g}(\mathbf{x}) \boldsymbol{\boldsymbol { h }}(\mathbf{x}) \mathbf{- 7}$, write the function rule that describes $\mathrm{y}=\boldsymbol{g}(\mathrm{x})$.

To define $g(x)$, take $h(x)$ and subtract 7. Remember, $h(x)$ is 4 times $f(x)-$ see rule above.
$g(x)=4(1 / 2 x-5)-7$
$g(x)=2 x-20-7$
$g(x)=2 x-27$

