Unit 10 – Function Notation

Let's work together. \bigcirc \bigcirc

- 1. Given the function **g** defined by $g(x) = x^2 4$, find the following:
 - (a) g(-3) $g(-3) = (-3)^2 - 4$ = 9 - 4 = 5 g(-3) = 5 (-3, 5) (b) g(0) $g(0) = (0)^2 - 4$ = 0 - 4 = -4 g(0) = -4 g(0) = -4 = -4 g(0) = -4
- 2. Using the function rule $h(x) = 15 \frac{3}{2}x$, find the value of x when h(x) = 24.

Replace <i>h</i> (x) with 24	3
$24 = 15 - \frac{3}{2}x$	$9 = -\frac{1}{2}x$
2 -15 -15	$\left(-\frac{2}{3}\right)(9) = \left(-\frac{3}{2}\right)\left(-\frac{2}{3}\right)x$
$9 = -\frac{3}{2}x$	-6 = x The value of x is -6

- 3. If the function f(x) = 2x 3 and $g(x) = \frac{3}{2}x + 1$ then which of the following is a true statement?
 - (1) f(0) > g(0) (3) f(2) = g(2)

(2) f(8) = q(8)

2)	View the table of	of values of each	es of each function.		
-)	x (input)	<i>f</i> (x) (output)	g(x) (output)		

x (input)	J(X) (Output)	g(x) (output)	
0	-3	1	
2	1	4	
4	5	7	
8	13	13	f(8) = g(8)

4. Given the function **f** defined by $f(x) = 3x^2 - 4$, which statement is true?

(4) q(4) < f(4)

(1) $f(0) = 0$ $f(0) = 3(0)^2 - 4$ = -4 False	(3) $x = 5$ when $f(x) = 75$ $f(5) = 3(5)^2 - 4$ = 75 - 4	You can also vie compare output Just enter $3x^2 - 4$	
i i disc	= 71 False	x (input)	<i>f</i> (x) (output)
(2) $f(-2) = f(2)$	(4) $f(5) \bullet f(2) = f(10)$	-2	8
$f(-2) = 3(-2)^2 - 4$	f(5) = 71	0	-4
= 8	f(2) = 8	2	8
$f(2) = 3(2)^2 - 4$	f(10) = 296	5	71
= 8 True	8 * 71 = 568 568 ≠ 296 False	10	296

5. Officials in a town use a function, P to analyze traffic patterns. **P(n)** represents the rate of traffic through an intersection where **n** is the number of observed vehicles in a specified time interval. What would be the most appropriate domain for the function?

(1) the set of real numbers
 (3) the set of whole numbers {0, 1, 2, 3...}
 cannot have a negative amount of vehicles or a fraction of a vehicle

(2) the set of rational numbers (4) the set of integers (*cannot have a negative # of vehicles*) *cannot have a negative amount of vehicles or a fraction of a vehicle*

- 6. Amy is purchasing t-shirts for her softball team. A local company has agreed to make the shirts for \$9 each with a one-time \$85 charge for graphic designs.
 - (a) Write a function rule in *function notation* that describes the cost, *C*, for the shirts in terms of *q*, the quantity ordered.

```
C: total cost of shirts C(q) = 9q + 85
q: the number of shirts purchased
```

(b) Find the cost of ordering 20 t-shirts.

```
C(q) = 9q + 85
C(20) = 9(20) + 85
= 180 + 85
= 265 The cost of ordering 20 t-shirts is $265
```

(c) If the softball team has \$450, how many t-shirts can they purchase? Check:

C(q) = 9q + 85	85 + 9(40) = \$445
450 = 9q + 85	\$445 < \$450 It checks
365 = 9q	
40.555 = q	85 + 9(41) = \$454
The maximum number of t-shirts that can be purchased is 40.	\$454 > \$450 -too expensive

The function y = r(x) represents the radius of a circle for a given area, x. A graph of the function is shown in this figure. Using the graph, complete a and b.

PIPS Question:

Given the function f defined by $f(x) = \frac{1}{2}x - 5$, the function h is defined by h(x) = 4f(x).

(a) Find h(6)

```
Find f(6) and multiply it by 4 to get h(6)2^{nd} Option:<br/>Define h(x).<br/><math>h(x) = 4f(x)<br/>h(6) = 4f(6)<br/>= -2h(x) = 4f(x)<br/>h(6) = 4f(6)<br/>= -8h(x) = 4(1/2) x - 5<br/>h(6) = -82^{nd} Option:<br/>Define h(x).<br/><math>h(x) = 4 \text{ times } f(x)<br/>h(x) = 4(1/2) x - 5)<br/>h(6) = -8h(x) = 2x - 20<br/>h(6) = 2(6) - 20<br/>h(6) = -8
```

(b) If function g is defined as g(x) = h(x) - 7, write the function rule that describes y = g(x).

To define g(x), take h(x) and subtract 7. Remember, h(x) is 4 times f(x) – see rule above. $g(x) = 4(\frac{1}{2}x - 5) - 7$ g(x) = 2x - 20 - 7g(x) = 2x - 27