Part I. Multiple Choice. Place the answers to the questions in the boxes below.

1.		2.		3.		4.		5.		6.		7.	
	2	4	3	2		2		4		2			

1. Which expression is equivalent to $\left(3 x^{5}+8 x^{3}\right)-\left(7 x^{2}-6 x^{3}\right)$?
(1) $-4 x^{3}+14$
(3) $-4 x^{5}+14 x^{3}$
(2) $3 x^{5}+14 x^{3}-7 x^{2}$
(4) $3 x^{5}+2 x^{3}-7 x^{2}$
$3 x^{5}+8 x^{3}-7 x^{2}+6 x^{3} \quad$ Distribute the - sign
$3 x^{5}+8 x^{3}-7 x^{2}+6 x^{3}$
2. If $(-4, k)$ is a point on the graph of the equation $3 x+y=-8$, find the value of k.
(1) -20
(2) -4
(3) 0
(4) 4
$3 x^{5}+14 x^{3}-7 x^{2}$

$$
\begin{aligned}
3 x+y & =-8 \\
3(-4)+y & =-8 \quad \text { Input }=-4 \quad \text { Find } y \text { (output) } \\
-12+y & =-8 \\
y & =4
\end{aligned}
$$

3. Which graph represents the equation $5 y-3 x=-15$?
(1)

(3)

$$
\begin{gathered}
5 y-3 x=-15 \\
+3 x \quad+3 x \\
\frac{5 y}{5}=\frac{3 x-15}{5} \\
y=\frac{3}{5} x-3
\end{gathered}
$$

$\mathrm{m}=3 / 5$ positive slope-line increases $b=-3$ intersects y-axis at ($0,-3$)
(2)

(4)

4. Which expression is equivalent to $(x+3)^{2}$?
(1) $x^{2}+6$
(3) $x^{2}+9$

$$
\begin{aligned}
& (x+3)(x+3) \\
& x^{2}+3 x+3 x+9 \\
& x^{2}+6 x+9
\end{aligned}
$$

(2) $x^{2}+6 x+9$
(4) $x^{2}+3 x+9$
5. Given the domain $\{0,1,2,3,4,5,6\}$, what is the solution set for the compound inequality $x<3 \vee x \geq 5$?
(1) $\}$
(2) $\{0,1,2,5,6\}$
(3) $\{0,1,2,3,5,6\}$
(4) $\{4,5\}$
$2<3 \quad 5 \geq 5 \quad 6 \geq 5$
\vee means OR. All solutions must make at least one of the inequalities true.
$0<3 \quad 2<3 \quad 1<3$
6. What is the largest integer that makes the statement $2 x-3 \leq 6$ true?
(1) 4.5
(3) 3
$2 x-3 \leq 6$
$2 x \leq 9$
(2) 5
(4) 4
$x \leq 4.5 \leftarrow$ not an integer
The largest integer that is less than or equal to 4.5 is 4
7. Which equation represents the graph of a line parallel to the y-axis and 1 unit to the right of it?
(1) $x=-1$
(2) $x=1$
(3) $y=1$
(4) $y=-1$
$x=1$ is a vertical line. All vertical lines are parallel to the y-axis.
$x=1$ is one unit to the right of the y-axis.

Extended Response: Show all work.

8. A high school is having a talent contest and will award prize money for the best 4 acts in the show. First place wins the most money, and each place after that wins $\$ 50$ less than the previous place. The talent contest has a total of $\$ 1,000$ in prize money. What is the amount of prize money awarded to each place? Only an algebraic solution will be accepted.
\mathbf{x} : amount of money awarded to $1^{\text {st }}$ place
$\mathbf{x - 5 0}$: amount of money awarded to $2^{\text {nd }}$ place
x-100: amount of money awarded to $3^{\text {rd }}$ place.

$$
\begin{aligned}
x+(x-50)+(x-100)+(x-150) & =1000 \\
4 x-300 & =1000 \\
4 x & =1300 \\
x & =325
\end{aligned}
$$

$x-150$: amount of money awarded to $4^{\text {th }}$ place.
$\mathbf{1}^{\text {st }}$ place: $\mathbf{\$ 3 2 5} \quad \mathbf{2}^{\text {nd }}$ place: $\mathbf{\$ 2 7 5} \quad \mathbf{3}^{\text {rd }}$ place: $\mathbf{\$ 2 2 5} \quad \mathbf{4}^{\text {th }}$ place: $\mathbf{\$ 1 7 5}$
Check: Each prize amount is 50 less than the previous and $325+275+225+175=1000$
9. Solve for x in $a x^{2}-b=c$

10. Jerome is constructing a table of values that satisfies the definition of a function.

Input	-13	20	0	-4	11	-1	17	
Output	-15	-11	-9	-2	-1	5	5	13

Which numbers can be placed in the empty cell so that the table of values satisfies the definition of a function? Circle all that apply.
A. -5
B. -1
C. 0
D. 2
E. 11
F. 17

Every input must be assigned to exactly one output.

