Part I. Multiple Choice. Directions: Place the answers to the questions in the boxes below.

1.	2.	3.	4.	5.	6.	7.
	4	1	4	3	2	3

1) Which inequality is equivalent to $\frac{3 x}{2}-6<9$? $\frac{3 x}{2}-6<9$
(1) $x<7$
(3) $x<2$
$\frac{3 x}{2}<15$
(2) $x<8$
(4) $x<10$

$$
\begin{aligned}
& \frac{2}{3} \cdot \frac{3 x}{2}<15 \cdot \frac{2}{3} \\
& x<10
\end{aligned}
$$

2) For which value of x is $\frac{1}{x-9}$ undefined?
(1) -9
(2) 3
(3) 0
(4) $9 \quad \frac{1}{9-9}=\frac{1}{0}$
3) Solve for $x: \frac{x}{2}=\frac{3 x-1}{5}$
(1) 2
(3) -2

$$
\begin{aligned}
& 2(3 x-1)=5 x \\
& 6 x-2=5 x \\
& -2=-x \\
& 2=x
\end{aligned}
$$

4) The sum of two consecutive integers is 62 . Which equation cannot be used to solve this problem?
(1) $x+(x+1)=62$
(3) $(x-1)+x=62$
(2) $(x+5)+(x+6)=62$
(4) $(x-4)+(x-2)=62$
$\boldsymbol{x}-4$ and $\boldsymbol{x}-2$ are consecutive even or odd integers because the pattern is +2
5) Which compound inequality statement represents the solution set graphed below?
(1) $-1 \leq x \leq 2$
(3) $-1<x<2$
(2) $-1>x>2$
(4) $-1<x\rangle 2$

6) Evaluate $1 / 4 \boldsymbol{k m}^{2}$ when $\boldsymbol{k}=-5$ and $\boldsymbol{m}=-\mathbf{6}$
(1) 45
(2) -45
(3) 225
(4) 56.25

$$
\begin{aligned}
& 1 / 4(-5)(-6)^{2} \\
& 1 / 4(-5)(36) \\
& 9(-5) \\
& -45 \\
& \text { Put all negative } \\
& \text { numbers in () }
\end{aligned}
$$

7) For which value of \boldsymbol{M} and \boldsymbol{N} is $\boldsymbol{M}+\boldsymbol{N}$ a rational number?
(1) $M=\frac{1}{\sqrt{2}}$ and $N=\frac{1}{\sqrt{10}}$
(3) $M=\frac{1}{\sqrt{4}}$ and $N=\frac{1}{\sqrt{9}}$ $\frac{1}{\sqrt{4}}=\frac{1}{2}$
$\frac{1}{\sqrt{9}}=\frac{1}{3}$
(2) $M=\frac{1}{\sqrt{6}}$ and $N=\frac{1}{\sqrt{4}}$
(4) $M=\frac{1}{\sqrt{10}}$ and $N=\frac{1}{\sqrt{25}}$
$\frac{1}{2}+\frac{1}{3}=\frac{5}{6} \leftarrow$ rational

Part II. Extended Response. Show all necessary work.
8) Solve for \boldsymbol{x} :

$$
2 y=\not z \cdot \frac{1}{2} p x^{2}
$$

a) $a x+3 b=2 f$
b) $y=\frac{1}{2} p x^{2}$
$2 y=p x^{2}$
$-3 b \quad-3 b$
a
$=\frac{2 f-3 b}{a}$

$$
\frac{2 y}{p}=\frac{p x^{2}}{p p}
$$

$$
x=\frac{2 f-3 b}{a}
$$

$$
\begin{aligned}
& \frac{2 y}{p}=x^{2} \\
& \sqrt{\frac{2 y}{p}}=x
\end{aligned}
$$

9) Given $2 x+a x-7>-12$, determine the largest integer value of a when $x=-1$.

$2(-1)+a(-1)-7>-12$	The value of \boldsymbol{a} that will make the inequality true is any number less
$-2-a-7>-12$	than 3 so the largest integer value that \boldsymbol{a} could represent is $\mathbf{2}$.
$-a-9>-12$	
$\underline{-a}>\frac{-3}{-1}$ Check: 2 as the integer Check: $\mathbf{3}$ as the integer $a<3$ $2(-1)+2(-1)-7>-12$ $2(-1)+3(-1)-7>-12$ $-11>-12$ True $--12>-12$ False	

10) Jack is 27 years older than Susan. In 5 years' time he will be 4 times as old as she is then. Find Jack and Susan's present age.

x: Susan's age now

x+27: Jack's age now
In 5 years... what do Susan and Jack look like?
Future Susan: x+5
Future Jack: $\mathbf{x + 2 7 + 5 \rightarrow x + 3 2}$

He (future Jack) will be 4 times as old as her (future Susan)

$$
\begin{aligned}
x+32 & =4(x+5) \rightarrow \text { Future Jack }=4 \text { (Future Susan) } \\
x+32 & =4 x+20 \\
32 & =3 x+20 \\
12 & =3 x
\end{aligned}
$$

$4=x \quad$ Susan is 4 yrs old and Jack is 31 yrs old.

