8 Algebra CC – SSB Answer Key

Part I. Multiple Choice. Directions: Place the answers to the questions in the boxes below.

1.	2.	3.	4.	5.	6.	7.	
3	1	2	3	1	4	4	
1. Solve (1) 0	for x: $\frac{2}{7}(x+9) =$ (2) -5	= x−11 (3) 19	(4) 22	$7 \bullet \frac{2}{7}(x + \frac{2}{2}(x + \frac{2}{2}x + \frac{2}{2}))$	$(+9) = (x - 11) \bullet 7$ (+9) = 7(x - 11) 18 = 7x - 77 2x = 7x - 95 -5x = -95 x = 19	2 nd Method Substitute each value and see which one makes the statement true.	1

2. Which expression is equivalent to (x + 1)(2x - 4) - 3x + 5?

(1) $2x^2 - 5x + 1$	(2) $2x^2 + 6x + 20$	(x + 1)(2x - 4) - 3x + 5 $(2x^{2} - 4x + 2x - 4) - 3x + 5$
(3) $2x^2 - 5x - 9$	(4) $2x^2 - x + 1$	$(2x^2 - 2x - 4) - 3x + 5$ $2x^2 - 2x - 4 - 3x + 5$ $2x^2 - 5x + 1$

Substitute each value to determine which value is the

3. Which value of x satisfies the equation $\frac{2}{3}\left(x+\frac{5}{8}\right)=0$? solution. $\frac{2}{3}(-0.625 + \frac{5}{8}) = 0$ (1) 0 (2) -0.625 $\frac{2}{3}(0) = 0$ (4) there is no value of x that will satisfy the equation (3) 1.6 0 = 0

4. A surfer calculates the intensity of a wave with the formula $n = 2bq - r^2$. Represent **b** in terms of **q**, **r** and **n**? $n = 2ha - r^2$

(1) $n-r^2-2q$	(2) $b - n$	$\frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2}$ $\frac{1}{r^2} = \frac{2bq}{r^2}$
(3) $\frac{n+r^2}{2q}$	(4) $\frac{n}{2} + \frac{r^2}{q}$	$\frac{2q}{n+r^2} = b$

- 5. Represent the product of x + 5 and $x^2 3x + 5$ as a simplified polynomial expression.
 - (1) $x^3 + 2x^2 10x + 25$ (2) $x^2 2x + 10$ (3) $x^3 - 2x^2 + 10x + 25$ (4) $x^3 - 15x + 5$

	X	5
x ²	x³	5 x ²
-3x	-3x ²	.15x
5	5x	25

- 6. Which of these expressions represents an irrational number?
 - (1) $(\sqrt{2})^2 = \sqrt{2} \cdot \sqrt{2} = \sqrt{4} = 2$ (2) $\sqrt{8} - 2\sqrt{2} = 2\sqrt{2} - 2\sqrt{2} = 0$ (4) $(\sqrt{9})(\sqrt{3}) = \sqrt{9} \cdot \sqrt{3} = \sqrt{9 \cdot 3} = \sqrt{27}$ (3) $-\sqrt[3]{216} = -6$ (6)(6)(6) = 216

- 7. The equations pictured below are equivalent. Which property justifies the equivalence?
 - (1) Commutative Property of Multiplication
- $-\frac{3}{4} \bullet -\frac{4}{3}(x-6) = 8 \bullet -\frac{3}{4}$ $x-6 = 8 \bullet -\frac{3}{4}$

- (2) Distributive Property
- (3) Identity Property of Multiplication
- (4) Inverse Property of Multiplication

Part II. Extended Response. Show all necessary work.

- 8. The formula **P** = 2**I** + 2**w** is used to find the perimeter of a rectangle.
 - A. Is P = 2(I + w) an equivalent formula? Justify your response.

Yes. P = 2(I + w) is equivalent to P = 2I + 2w because of the distributive property.

B. Solve the formula **P** = 2**I** + 2**w** for **w**.

$$P = 2I + 2w$$

$$\frac{P - 2I}{2} = \frac{2w}{2}$$

$$\frac{P - 2I}{2} = w$$

C. Using your formula from part B, calculate the width of a rectangle with a perimeter of 17 meters and a length of 6 meters. *Check* your answer with P = 2I + 2w.

$w = \frac{P-2I}{r}$	Check
2 17-2(6)	P=2I+2w
$w = \frac{17 - 2(0)}{2}$	17 = 2(6) + 2(2.5)
$w = \frac{5}{2}$	17 = 12 + 5
2 The width is 2.5 meters.	17 = 17

9. Determine the solution set to the equation: $\frac{x+3}{x+3} = 1$

$$1(x + 3) = 1(x + 3)$$

$$x + 3 = x + 3$$

This equation has infinite solutions. However, x cannot be equal to -3. It will make the denominator of the original equation equal to 0 which makes the fraction undefined.

x equals all real numbers except -3 ($x \neq -3$)