Part I. Multiple Choice. Directions: Place the answers to the questions in the boxes below.

1.	2.	3.	4.	5.	6.	7.
3	1	2	3	1	4	4

1. Solve for $x: \frac{2}{7}(x+9)=x-11$
(1) 0
(2) -5
(3) 19
(4) 22

$$
\begin{array}{rlrl}
7 \bullet \frac{2}{7}(x+9) & =(x-11) \bullet 7 & & \begin{array}{l}
2^{\text {nd }} \text { Method } \\
2(x+9)
\end{array} \\
\text { Substitute } \\
2 x+18 & =7 x-71) & & \text { each value and } \\
2 x & =7 x-95 & & \text { see which one } \\
-5 x & =-95 & & \text { makes the } \\
x & =19 & & \text { true. }
\end{array}
$$

2. Which expression is equivalent to $(x+1)(2 x-4)-3 x+5$?
(1) $2 x^{2}-5 x+1$
(2) $2 x^{2}+6 x+20$
$(x+1)(2 x-4)-3 x+5$
$\left(2 x^{2}-4 x+2 x-4\right)-3 x+5$
(3) $2 x^{2}-5 x-9$
(4) $2 x^{2}-x+1$
$\left(2 x^{2}-2 x-4\right)-3 x+5$
$2 x^{2}-2 x-4-3 x+5$
$2 x^{2}-5 x+1$
3. Which value of x satisfies the equation $\frac{2}{3}\left(x+\frac{5}{8}\right)=0$?
(1) 0
(2) -0.625
(4) there is no value of x that will satisfy the equation

Substitute each value to determine which value is the

$$
\begin{aligned}
& \frac{2}{3}\left(-0.625+\frac{5}{8}\right)=0 \\
& \frac{2}{3}(0)=0 \\
& 0=0
\end{aligned}
$$

4. A surfer calculates the intensity of a wave with the formula $\boldsymbol{n}=\mathbf{2 b q}-\boldsymbol{r}^{2}$. Represent \mathbf{b} in terms of \mathbf{q}, \mathbf{r} and \mathbf{n} ?
(1) $n-r^{2}-2 q$
(2) $b-n$

$$
\begin{aligned}
& n=2 b q-r^{2} \\
& +r^{2} \\
& \frac{n+r^{2}}{2 q}=\frac{2 b q}{2 q} \\
& \frac{n+r^{2}}{2 q}=b
\end{aligned}
$$

(3) $\frac{n+r^{2}}{2 q}$
(4) $\frac{n}{2}+\frac{r^{2}}{q}$
5. Represent the product of $x+5$ and $x^{2}-3 x+5$ as a simplified polynomial expression.
(1) $x^{3}+2 x^{2}-10 x+25$
(2) $x^{2}-2 x+10$
(3) $x^{3}-2 x^{2}+10 x+25$
(4) $x^{3}-15 x+5$
6. Which of these expressions represents an irrational number?

(1) $(\sqrt{2})^{2}=\sqrt{2} \cdot \sqrt{2}=\sqrt{4}=2$
(2) $\sqrt{8}-2 \sqrt{2}=2 \sqrt{2}-2 \sqrt{2}=0$
(3) $-\sqrt[3]{216}=-6$
(4) $(\sqrt{9})(\sqrt{3})=\sqrt{9} \cdot \sqrt{3}=\sqrt{9 \bullet 3}=\sqrt{27}$
$(6)(6)(6)=216$
7. The equations pictured below are equivalent. Which property justifies the equivalence?
(1) Commutative Property of Multiplication

$$
\begin{aligned}
-\frac{3}{4} \bullet-\frac{4}{3}(x-6) & =8 \bullet-\frac{3}{4} \\
x-6 & =8 \bullet-\frac{3}{4}
\end{aligned}
$$

(2) Distributive Property
(3) Identity Property of Multiplication
(4) Inverse Property of Multiplication

Part II. Extended Response. Show all necessary work.

8. The formula $\mathbf{P}=\mathbf{2 l}+\mathbf{2 w}$ is used to find the perimeter of a rectangle.
A. Is $\mathbf{P}=\mathbf{2}(\mathbf{I}+\mathbf{w})$ an equivalent formula? Justify your response.

Yes. $P=2(I+w)$ is equivalent to $P=2 I+2 w$ because of the distributive property.
B. Solve the formula $\mathbf{P}=\mathbf{2 l}+\mathbf{2 w}$ for \mathbf{w}.

$$
\begin{aligned}
& P=21+2 w \\
& -21-21 \\
& \frac{P-21}{2}=\frac{2 w}{2} \\
& \frac{\mathbf{P}-\mathbf{2 l}}{\mathbf{2}}=\mathbf{w}
\end{aligned}
$$

C. Using your formula from part B, calculate the width of a rectangle with a perimeter of 17 meters and a length of 6 meters. Check your answer with $\mathbf{P}=\mathbf{2 l}+\mathbf{2 w}$.

$$
\begin{array}{ll}
w=\frac{P-2 l}{2} & \text { Check } \\
w=\frac{17-2(6)}{2} & P=2 l+2 w \\
w=\frac{5}{2} & 17=2(6)+2(2.5) \\
\text { The width is } 2.5 \text { meters. } & 17=12+5 \\
17=17
\end{array}
$$

9. Determine the solution set to the equation: $\frac{x+3}{x+3}=1$

$$
\begin{gathered}
1(x+3)=1(x+3) \\
x+3=x+3
\end{gathered}
$$

This equation has infinite solutions. However, x cannot be equal to -3 . It will make the denominator of the original equation equal to 0 which makes the fraction undefined.
x equals all real numbers except $-3(x \neq-3)$

