Unit 5 Study Guide -Applications with Equations (AKA: "Word Problems")

I. GENERAL WORD PROBLEMS

KEY CONCEPT: When working with general word problems...

- Read the problem carefully and pull out important information (list if necessary)
- Define all unknowns in terms of one variable

Ex: Jan ran twice as many miles on Tuesday than on Monday
$x=$ number of miles ran on Monday
$2 x=$ number of miles ran on Tuesday

- Set up an equation relating all unknowns and solve
- Answer the question (find the unknowns)
- Check your solution(s) with the "words" of the problem

Remember: Always let $x=$ the unknown you know the least about
When necessary, put () around expressions with more than one term
Answer what is being asked

Examples:

1) A rectangle and square have the same perimeter. Each side of the square measures 10 cm .

The length of the rectangle is three times its width. Find the dimensions of the rectangle.
x : the width of the rectangle (5)
$3 x$: the length of the rectangle $(3 \bullet 5=15)$
$P=21+2 w$
$40=2 x+2(3 x)$
$40=2 x+6 x$

$40=8 x$
$5=x \quad$ The width is 5 cm and the length is 15 cm
2) Jane calculated that, on her day's intake of 2156 calories, four times as many calories were from carbohydrates than from protein, and twice as many calories were from fat than from protein. How many calories were from carbohydrates?
x : the number of calories from protein (308)
$4 x$: the number of calories from carbohydrates $(4 \bullet 308=1232)$
$2 x:$ the number of calories from fat $(2 \cdot 308=616)$
$x+4 x+2 x=2156$ [protein calories + carbohydrate calories + fat calories $=$ total calories]
$7 x=2156$
$x=308 \quad$ The number of calories from carbohydrates is 1232

II. CONSECUTIVE INTEGER WORD PROBLEMS

KEY CONCEPT:

- Variables used for finding consecutive integers ($x, x+1, x+2$, etc...) Consecutive integers show a difference of 1
- Variables used for finding either even or odd consecutive integers ($x, x+2, x+4$, etc...) Consecutive even or odd integers show a difference of two

Remember: When necessary, put () around expressions with more than one term Answer what is being asked

Examples:

1) Find three consecutive integers such that 5 times the second is 22 more than twice the sum of the smallest and largest
x: $1^{\text {st }}$ consecutive integer
$x+1: 2^{\text {nd }}$ consecutive integer
$x+2: 3^{\text {rd }}$ consecutive integer

$$
\begin{aligned}
5(x+1) & =22+2(x+x+2) \\
5 x+5 & =22+2 x+2 x+4 \\
5 x+5 & =26+4 x \\
5 x & =21+4 x
\end{aligned}
$$

$$
x=21 \quad \text { The integers are 21, } 22 \text { and } 23
$$

2) Find three consecutive odd integers whose sum is -81 .
$x: 1^{\text {st }}$ consecutive odd integer
$x+2: 2^{\text {nd }}$ consecutive odd integer
$(-29+2=-27)$
$x+4: 3{ }^{\text {rd }}$ consecutive odd integer

$$
\begin{aligned}
x+(x+2)+(x+4) & =-81 \quad\left[1^{\text {st }} \text { odd int. }+2^{\text {nd }} \text { odd int. }+3^{\text {rd }} \text { odd int. }=\text { sum }\right] \\
3 x+6 & =-81 \\
3 x & =-87 \\
x & =-29 \quad \text { The integers are }-29,-27 \text { and }-25
\end{aligned}
$$

III. MONEY WORD PROBLEMS (COIN, STAMP \& TICKET)

KEY CONCEPT:

- Value of an item = the value of each item (worth) \times the number of items (how many) Ex: the value of 10 stamps worth 2 cents each $=10(2)=20$ cents

Remember: You can work in pennies by multiplying both sides of the equation by 100 Set up a table to find the total value of an item Use () when an expression has more than 1 term

Examples:

1) A person has 23 coins made up dimes and quarters worth $\$ 3.35$. How many coins of each type are there?
\mathbf{x} : the number of dimes
23 - x : the number of quarters

Coins	Value	Quantity	Total Value
Dimes	.10	x	$.10 x$
Quarters	.25	$23-x$	$.25(23-x)$

$$
\begin{aligned}
.10 x+.25(23-x) & =3.35 \\
10 x+25(23-x) & =335 \\
10 x+575-25 x & =335 \\
-15 x+575 & =335 \\
-15 x & =-240
\end{aligned}
$$

$$
x=16 \quad \text { There are } 16 \text { dimes and } 7 \text { quarters }
$$

2) Spotlight's production of The Little Mermaid sold 123 tickets for the Thursday afternoon showing. The price of adult admission was $\$ 5$ and the price of student admission was $\$ 3.50$. If Spotlight earned $\$ 465$ from ticket sales, how many of each type of ticket was sold?

Tickets	Value	Quantity	Total Value
Student Tickets	3.50	x	$3.50 x$
Adult Tickets	5	$123-x$	$5(123-x)$

x: number of student tickets
123 - x : number of adult tickets

$$
\begin{aligned}
5(123-x)+3.5 x & =465 & & \\
615-5 x+3.5 x & =465 & & 100 \text { student tickets } \\
615-1.5 x & =465 & & \text { were sold and } 23 \\
-1.5 x & =-150 & & \text { adult tickets were } \\
x & =100 & & \text { sold }
\end{aligned}
$$

$10 x+25(23-x)=335 \longleftarrow$ total amount of money (\$)
total amount of total amount of money (\$) from dimes

IV. MIXTURE WORD PROBLEMS

KEY CONCEPT: Multiply \rightarrow (\% or the value per unit) \times (quantity)
Remember: "Money" is not always part of the problem
Set up a table to organize the information

Examples:

1) Caramels sell for $\$ 1.20$ per lb and taffies sell for $\$ 1.90$ per lb in the candy store. How many lbs of each type of candy were sold if a 18 lb mixture sold for $\$ 25.80$.

Candy	Value (\$/lb)	Quantity (lbs)	Total Value
Caramel	1.20	x	$1.2 x$
Taffy	1.90	$18-x$	$1.9(18-x)$

12 lbs of caramels were sold and 6 lbs of taffy was sold
2) Twelve pounds of mixed nuts (brand A) contains 10% cashews. These nuts were mixed with 8 pounds of another kind of mixed nuts (brand B). What percent of brand B was made up of cashews if the mixture of A and B was 30% cashews?

Mixed Nuts	\% of cashews	total lbs of nuts	lbs of cashews
Brand A	.10	12 lbs	$.10(12)$
Brand B	x	8 lbs	$\times(8)$

$$
\begin{gathered}
.10(12)+x(8)=.30(20) \\
1.2+8 x=6 \\
8 x=4.8 \\
x=.6
\end{gathered}
$$

60% of the mixture is cashews

V. AGE WORD PROBLEMS

KEY CONCEPT:

- Define the ages now (present ages)
- Define the ages in the past and/or future
- Set up an equation that represents the relationship described between the ages

Remember: Set up a table to organize the information
Example: Jen is 10 years older than Phil. In 6 years, Phil will be $\frac{1}{2}$ Jen's age. How old are they now?

Ages	Now	In 6 Years
Phil's age	x	$x+6$
Jen's age	$x+10$	$(x+10)+6 \rightarrow x+16$

$x+6=\frac{1}{2}(x+16)$

Jen's age in 6 yrs

$$
\begin{aligned}
x+6 & =\frac{1}{2}(x+16) \\
x+6 & =0.5 x+8 \\
0.5 x+6 & =8 \\
0.5 x & =2 \\
x & =4
\end{aligned}
$$

Phil is 4 years old and Jen is 14 years old.

VI. WORK WORD PROBLEMS

KEY CONCEPT:

| - time it takes 1st person/object |
| :--- | :--- | :--- |$+\frac{1}{\text { time it takes 2nd person/object }}=\frac{1}{\text { total time it takes }}$| to complete job | to complete job |
| :--- | :--- |

Remember: Define your unknown ($x=$?)
In order to solve the rational equation, create a proportion

Example: Jerry can trim the bushes in 5 hours but Alan can do it in 3 hours. How long will it take if both boys to do the job together?
x : the number of hours it takes to do the job together

$$
\begin{aligned}
& \frac{1}{5}+\frac{1}{3}=\frac{1}{x} \\
& \frac{3}{15}+\frac{5}{15}=\frac{1}{x}
\end{aligned} \quad \text { 才 } \begin{aligned}
& 8(x)=15(1) \\
& 8 x=15 \\
& x=\frac{15}{8}=1 \frac{7}{8}
\end{aligned}
$$

$$
\frac{8}{15}=\frac{1}{x}
$$

It will take $1 \frac{7}{8}$ hours to complete trim the bushes
VII. Distance, Rate, Time

KEY CONCEPT: $\quad D=$ Rate \times Time

Remember:
Distance of $A+$ Distance of $B=$ Total Distance of A and B

Distance $A=$ Distance B

Example: Two trains leave at the same station in opposite directions. One train travels 15 mph faster than the other. After 3 hrs , the trains are 315 miles apart. Find the rate of each train.

$$
\left.\begin{array}{rl}
\text { Let } x=\text { rate of } A & 45 \mathrm{mph} \\
\text { Let } x+15=\text { rate of } B & 60 \mathrm{mph}
\end{array}\right] \begin{aligned}
\text { A's Distance }+ \text { B's Distance } & =\text { Total Distance (A\&B) } \\
\text { RT }+ \text { RT } & =\quad D \\
(x)(3)+(x+15)(3) & =315 \\
3 x+3 x+45 & =315 \\
6 x+45 & =315 \\
6 x & =270 \\
x & =45
\end{aligned}
$$

