Name_____ Mini-Quiz # 5 (Regents Review)

My child has completed this entire assignment by Sunday night.

25

Guardian Signature_

Part I. Answer 11 questions in this part. Each correct answer will receive 1 credit. For each question, all necessary work should be shown to the right side of the problem. *All questions marked W require appropriate work to be shown or <u>no credit will be given - even if a correct answer is provided</u>. [11]*

- 1. Which ordered pair is in the solution set of the system of inequalities shown in the accompanying graph?
 - (1) (0,0) (2) (0,1)
 - (3) (1,5) (4) (3,2)

- **W** 2. A coin appreciates in value each year by 4%. If the original value of the coin was \$54, what is the closest estimate to how much the coin is worth after eight years?
 - (1) \$34 (2) \$40 (3) \$57 (4) \$74
 - 3. What is the additive inverse of the expression a cd?
 - (1) cd a (3) -cd + a
 - (2) $\frac{1}{cd-a}$ (4) cd+a
 - 4. One factor of the expression $x^4 y^2$ 36 is
 - (1) xy 6 (3) $x^2 y 18$
 - (2) $x^2 y + 6$ (4) $x^2 y^2 + 6$

5. A linear regression equation of best fit between a student's attendance and the degree of success in school is h = -0.5x + 68.5. The correlation coefficient, *r*, for these data would be

(1) 0 < r < 1 (2) -1 < r < 0 (3) r = 0 (4) r = -1

W 6. Find the *x*-coordinate of the solution to the system: y = 3x - 4

5x - y = 6

- (1) -1 (2) 0 (3) 1 (4) 2
- W 7. In a geometric sequence, $a_1 = 0.3$ and r = 3. Find a_{12} , to the *nearest integer*.
 - (1) 53,144 (2) 159,432 (3) 177,147 (4) 531,441

W 8. When factored completely, the expression $x^4 - 16$ is equivalent to

- (1) $(x^2 + 4)(x^2 4)$ (2) $(x^2 + 4)(x + 2)(x - 2)$ (3) $(x^2 - 4)(x^2 - 4)$ (4) (x + 2)(x - 2)(x + 2)(x - 2)
- W 9. The cost of a telephone call from Wilson, NY to East Meadow, NY is \$0.80 for the first three minutes plus \$0.15 for each *additional* minute. What is the greatest number of whole minutes of a telephone call if the call cannot exceed \$2.50?
 - (1) 1 (2) 4 (3) 5 (4) 11
- W 10. Using the function f(x) = -2x + 5, represent the value of f(x 1) as a simplified polynomial expression.
 - (1) -2x + 3 (2) x + 4
 - (3) -2x + 4 (4) -2x + 7

11. Which table represents a linear function?

(1) Table 1		-											
	x	0	1	2	3	4		х	0	1	2	3	4
(2) Table 2	f(x)	4	5	6	7	8		f(x)	0	1	4	9	16
		Table 1						Table 3					
(3) Table 3	x	0	1	2	3	4		х	0	1	2	3	4
(4) Table 4	f(x)	0	2	8	18	32		f(x)	-1	0	3	8	15
	Table 2						•	Table 4					

Part II. Answer all questions in this part. Each correct answer will receive 3 credits. Clearly indicate all necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [6]

- 12. Safe-Driving Taxi Service charges \$6 per pickup and \$0.65 per mile. We'll Get You There Cab charges \$2 per pickup and \$0.90 per mile.
 - A. Write an equation for each company that represents the amount of money charged, A, for driving m miles with one pickup.

Safe-Driving Taxi ______ We'll Get You There _____

B. Find the number of miles a person can ride in which both companies will charge the same amount (*assume there is only one pick-up*).

13. Given the functions f(x) and h(x). State which function has the greater *average rate of change* over the interval $1 \le x \le 3$. Justify your response.

Part III. Answer both questions in this part. Each correct answer will receive 4 credits. Clearly indicate all necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [8]

14. Since 1990, fireworks usage nationwide has grown, as shown in the accompanying table, where t represents the number of years since 1990, and p represents the fireworks usage per year, in millions of pounds.

Number of Years Since 1990 (<i>t</i>)	0	2	4	6	7	8	9	11
Fireworks Usage per Year, in Millions of Pounds (<i>p</i>)	67.6	88.8	119.0	120.1	132.5	118.3	159.2	161.6

- A. Find the equation of the linear regression model for this set of data, where *t* is the independent variable. Round values to *three decimal places*.
- B. Based on this linear model, how many millions of pounds of fireworks would be used in the year 2008? Round your answer to the *nearest hundredth*.

15. Use the graph below to solve the system $y = 2(.5)^x$ and 2y = -3x + 5.

