

My child has completed this entire assignment by Sunday night.

Guardian Signature
Part I. Answer 11 questions in this part. Each correct answer will receive 1 credit. For each question, all necessary work should be shown to the right side of the problem. All questions marked W require appropriate work to be shown or no credit will be given - even if a correct answer is provided. [11]

1.	2.	3.	4.	5.	6.
7.	8.	9.	10.	11.	

1. Which ordered pair is in the solution set of the system of inequalities shown in the accompanying graph?
(1) $(0,0)$
(2) $(0,1)$
(3) $(1,5)$
(4) $(3,2)$

W 2. A coin appreciates in value each year by 4%. If the original value of the coin was $\$ 54$, what is the closest estimate to how much the coin is worth after eight years?
(1) $\$ 34$
(2) $\$ 40$
(3) $\$ 57$
(4) $\$ 74$
3. What is the additive inverse of the expression $a-c d$?
(1) $c d-a$
(3) $-c d+a$
(2) $\frac{1}{c d-a}$
(4) $c d+a$
4. One factor of the expression $x^{4} y^{2}-36$ is
(1) $x y-6$
(3) $x^{2} y-18$
(2) $x^{2} y+6$
(4) $x^{2} y^{2}+6$
5. A linear regression equation of best fit between a student's attendance and the degree of success in school is $\boldsymbol{h}=\mathbf{- 0 . 5 x}+\mathbf{6 8 . 5}$. The correlation coefficient, \boldsymbol{r}, for these data would be
(1) $0<r<1$
(2) $-1<r<0$
(3) $r=0$
(4) $r=-1$

W 6. Find the x-coordinate of the solution to the system: $y=3 x-4$

$$
5 x-y=6
$$

(1) -1
(2) 0
(3) 1
(4) 2

W 7. In a geometric sequence, $a_{1}=0.3$ and $r=3$. Find a_{12}, to the nearest integer.
(1) 53,144
(2) 159,432
(3) 177,147
(4) 531,441

W 8. When factored completely, the expression $x^{4}-16$ is equivalent to
(1) $\left(x^{2}+4\right)\left(x^{2}-4\right)$
(2) $\left(x^{2}+4\right)(x+2)(x-2)$
(3) $\left(x^{2}-4\right)\left(x^{2}-4\right)$
(4) $(x+2)(x-2)(x+2)(x-2)$

W 9. The cost of a telephone call from Wilson, NY to East Meadow, NY is $\$ 0.80$ for the first three minutes plus $\$ 0.15$ for each additional minute. What is the greatest number of whole minutes of a telephone call if the call cannot exceed $\$ 2.50$?
(1) 1
(2) 4
(3) 5
(4) 11

W 10. Using the function $f(x)=-\mathbf{x}+\mathbf{5}$, represent the value of $\boldsymbol{f}(\boldsymbol{x}-\mathbf{1})$ as a simplified polynomial expression.
(1) $-2 x+3$
(2) $x+4$
(3) $-2 x+4$
(4) $-2 x+7$
11. Which table represents a linear function?
(1) Table 1
(2) Table 2

\mathbf{x}	0	1	2	3	4
$\mathbf{f}(\mathbf{x})$	4	5	6	7	8

Table 1

\mathbf{x}	0	1	2	3	4
$\mathbf{f (x)}$	0	1	4	9	16

Table 3
(3) Table 3
(4) Table 4

\mathbf{x}	0	1	2	3	4
$\mathbf{f}(\mathbf{x})$	0	2	8	18	32

\mathbf{x}	0	1	2	3	4
$\mathbf{f}(\mathbf{x})$	-1	0	3	8	15

Table 4

Part II. Answer all questions in this part. Each correct answer will receive $\mathbf{3}$ credits. Clearly indicate all necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [6]
12. Safe-Driving Taxi Service charges $\$ 6$ per pickup and $\$ 0.65$ per mile. We'll Get You There Cab charges $\$ 2$ per pickup and $\$ 0.90$ per mile.
A. Write an equation for each company that represents the amount of money charged, \boldsymbol{A}, for driving \boldsymbol{m} miles with one pickup.

Safe-Driving Taxi \qquad We'll Get You There \qquad
B. Find the number of miles a person can ride in which both companies will charge the same amount (assume there is only one pick-up).
13. Given the functions $\boldsymbol{f}(\mathbf{x})$ and $\boldsymbol{h}(\mathbf{x})$. State which function has the greater average rate of change over the interval $1 \leq x \leq 3$. Justify your response.

x	$f(x)$
0	1
1	2
2	5
3	7

Part III. Answer both questions in this part. Each correct answer will receive 4 credits. Clearly indicate all necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [8]
14. Since 1990, fireworks usage nationwide has grown, as shown in the accompanying table, where \boldsymbol{t} represents the number of years since 1990, and \boldsymbol{p} represents the fireworks usage per year, in millions of pounds.

Number of Years Since 1990 (t)	0	2	4	6	7	8	9	11
Fireworks Usage per Year, in Millions of Pounds (p)	67.6	88.8	119.0	120.1	132.5	118.3	159.2	161.6

A. Find the equation of the linear regression model for this set of data, where t is the independent variable. Round values to three decimal places.
B. Based on this linear model, how many millions of pounds of fireworks would be used in the year 2008? Round your answer to the nearest hundredth.
15. Use the graph below to solve the system $y=2(.5)^{x}$ and $2 y=-3 x+5$.

