ALGEBRA RH

QUADRATIC APPLICATIONS PRATICE

1. Courtney is building a rectangular wading pool. She wants the area of the bottom to be $54ft^2$. She also wants the length of the pool to be 3 feet longer than twice the width. What are the dimensions of the pool?

- **2.** A water balloon is catapulted into the air so that its height *h*, in meters, after *t* seconds is $h(t) = -5t^2 + 25t + 2$.
 - a. How high is the balloon after 1 second?
 - **b.** When is the balloon 32 meters or higher?

c. What is the maximum height of the balloon?

d. When will the balloon burst upon hitting the ground? Round to the nearest hundredth.

3. A rectangular mural is to be drawn centered on a wall in the school cafeteria as shown below. The wall is 16m by 12m and the mural needs to cover 75% of the total area of the wall. What are the dimensions, to the nearest tenth, of the mural? Solve algebraically.

- **4.** The function $h = -16t^2 + 1700$ gives an object's height *h*, in feet, at *t* seconds.
 - a. What does the number 1700 mean in context?
 - **b.** What does the coefficient of t^2 tell you about the end behavior of the object.
 - c. When will the object be 676 feet above the ground?

d. What is a reasonable domain and range for this function? Express in both inequality notation and interval notation.