1. Given $f(x)=-2 x^{2}-4 x+7$,
a. What form is this quadratic equation in?
b. Find the vertex. Is this a maximum or a minimum?
c. Find the roots using the quadratic formula
d. State the y-intercept
e. Does this parabola open up or down? How do you know by just looking at the equation?
2. The roots for a quadratic function are given. Write an equation for each function in factored Form (Intercepts Form) if $a=2$

$$
r_{1}=-6 \quad \text { and } r_{2}=9
$$

3. Write an equation for the function of the graph given below in factored form and standard form Assume $a=1$

4. If $a=1$ and the vertex is $(-2,6)$, write the equation of the quadratic function in vertex form.
5. Find the vertex of the following parabola. Is it a minimum or a maximum? What is the equation of the axis of symmetry?

$$
y=2(x+1)^{2}-5
$$

6. Write the equation in vertex form and standard form of the function shown in the graph below. Assume $a=1$

7. Given $f(x)=-2 x^{2}-4 x+7$,
a. What form is this quadratic equation in? Standard Form
b. Find the vertex. Is this a maximum or a minimum?
$x=\frac{-(-4)}{2(-2)} \quad x=-1 \quad(-1,9) \quad$ Maximum, it opens down
c. Find the roots using the quadratic formula

$$
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(-2)(7)}}{2(-2)} \quad x=\frac{4 \pm \sqrt{72}}{-4} \quad x=\frac{4 \pm 6 \sqrt{2}}{-4} \quad x=\frac{2 \pm 3 \sqrt{2}}{-2}
$$

d. State the y-intercept

$$
(0,7)
$$

e. Does this parabola open up or down? How do you know by just looking at the equation?

It opens down because the leading coefficient is negative
2. The roots for a quadratic function are given. Write an equation for each function in factored Form (Intercepts Form) if $a=2$

$$
\begin{aligned}
& r_{1}=-6 \quad \text { and } r_{2}=9 \\
& y=2(x+6)(x-9)
\end{aligned}
$$

5. Write an equation for the function of the graph given below in factored form and standard form Assume $a=1$

$$
\begin{gathered}
r_{1}=-2 \\
r_{2}=5 \\
y=(x+2)(x-5) \\
y=x^{2}-3 x-10
\end{gathered}
$$

6. If $a=1$ and the vertex is $(-2,6)$, write the equation of the quadratic function in vertex form.

$$
y=(x+2)^{2}+6
$$

5. Find the vertex of the following parabola. Is it a minimum or a maximum? What is the equation of the axis of symmetry?

$$
y=2(x+1)^{2}-5
$$

$(-1,-5)$, minimum because the parabola opens up.

$$
\text { A.O.S. is } x=-1
$$

A. Write the equation in vertex form and standard form of the function shown in the graph below. Assume $a=1$

$$
\begin{aligned}
& \text { Vertex: }(-4,2) \\
& \begin{array}{l}
y=(x+4)^{2}+2 \\
y=x^{2}+8 x+18
\end{array}
\end{aligned}
$$

