Essential Question: How can we factor polynomials?

Do Now: Find the GCF of each set of terms.

(a) $36a^4b^3$ and $48a^2$

(b)
$$14x^2y^4$$
 and $21xy^3$

Let's Review Some Important Vocabulary

Factors: Numbers and variables that when multiplied together produce a given product.

Examples: Factors of $36 = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ Factors of $6x = \{1, 6x, x, 6, 2x, 3, 2, 3x\}$

Integral Factors: Factors that are integers.

Example: The integral factors of $4 = \{1, 2, 4, -1, -2, -4\}$

Factoring: Rewriting a polynomial expression as a product.

Example: $6x^2 + 3$ in factored form $=> 3(2x^2 + 1)$

Prime Polynomials: A polynomial is prime if it cannot be written as a product of polynomials with integer coefficients.

Example: 2x + 5 **Non-example:** 2x + 4 can be factored into 2(x + 2)

Factoring Polynomials by factoring out a Monomial (GCF) GCF(_____)

- Determine the GCF of each term (1st factor)
- Divide each term by the GCF in order to find the second factor

<u>Examples:</u>

- 1. $9a^4 + 6a^3 12a$ 2. $4x^2y^3 - 2xy$
- 3. $64x^3 56x^2 + 88x$ 4. $18abc + 4bc - 2a^2bc^2$

5.
$$24x^3 + 32x + 15$$

6. $a^3b^2 + a^3b^4 + ab^4$

Factoring a Quadratic Trinomial (coefficient of x^2 is 1) $x^2 + bx + c$

AM Method

 $x^2 + bx + c$ factors into 2 binomials (x + p)(x + q) where p + q = b and $\mathbf{pq} = \mathbf{c}$

Examples:

7.
$$x^2 + 11x + 28$$
 8. $x^2 - 9x + 8$

9.
$$x^2 + x - 20$$
 10. $x^2 - 10x - 21$

11.
$$x^2 + 14x + 40$$
 12. $x^4 - 2x^2 - 15$

13.
$$x^2 - 33x - 280$$
 14. $x^2 + 8xy - 33y^2$

$a^{2}-b^{2}$ **Factoring the Difference of Two Squares ("DOTS")**

• In order to factor DOTS, you much recognize DOTS.

Example: Is $x^2 - 9$ a difference of two squares (DOTS)?

Both x^2 and **9** are perfect squares. Since we are subtracting the perfect squares, this expression is referred to as the difference of two squares.

• Once you have DOTS, take the square root of each term.

In x ² - 9 • What times itself is x ² ?	List the perfect squares
What times itself is 9?	

Using each root, create a sum and difference. •

The factors are _____ and _____.

Therefore, the factorization of $x^2 - 9$ is _____

Rule: $a^2 - b^2 =$ _____

Factor the following expressions using the **DOTS** method.

23) A rectangle has an area of $16x^2 - 64$. What could be the dimensions of the rectangle?

24) Is $a^2 + b^2$ factorable? Explain. 25) Is $x^9 - 4$ factorable? Explain.

Factor out GCF.

1. $16c^7 - 6c^3$	2. $8y^5 - 12y^3 + 4y$	3. $14z^8 + 24z^7 - 30z^3$
4. $25d^5 + 45d^4$	5. $9k^4 + 12k^3 - 6k$	6. $c^3 + c^2 - c$
7. $6n^2 - 30n + 42$	8. $100z^9 + 50z^6 - 75z^5$	9. $18p^3 - 63p^2 - 9p$
10. 36 <i>k</i> – 30	11. $-7m^2 - 10m + 17$	12. $2c^5d^4 - 3c^4 + 4c^3$

Factor using AM method.

13. $x^2 + 3x - 18$	14. $t^2 - t - 72$	15. $t^2 + 4t - 12$
16. $d^2 - 13d + 36$	17. $t^2 + 4t - 21$	18. $m^2 + 11m + 24$
19. $x^2 - 10x - 24$	20. $x^2 - 10x - 11$	21. $x^2 + 7xy + 12y^2$
22. $x^2 - 5xy - 50y^2$	23. $x^2 + 2xy - 15y^2$	24. $x^2 - 9xy - 36y^2$

Factor using DOTS.

25. $4x^2 - 9$	26. $64 - 100y^2$	27. $m^6 - 36n^2$
$28.121x^2y^2 - 1$	$29.(a+b)^2 - m^2$	$30.169x^4y^{10} - 225z^2$
		200 2000 9 2202