Essential Question: How do we evaluate composite functions?

Do Now:

Write in function notation.
a) $y=2 x+5$
b) $C=12 n+100$

Evaluate each function.
c) $g(n)=4 n-5$; Find $g(6)$
d) $g(n)=n^{2}+4 n ;$ Find $g(2)$

Evaluate each function.

1) $\mathrm{k}(a)=4 a+2$; Find $\mathrm{k}(a-3)$
2) $h(t)=-2 t+2 ;$ Find $h(-3 t)$
3) $h(n)=3 n+5$; Find $h(-4 n)$
4) $h(x)=x^{2}+1$; Find $h\left(\frac{x}{4}\right)$

The function pictured to the right is represented by $g(x)$.
$g(2)=$
$g(-3)=$

What is the value of x when $g(x)=-4$?

For what values of x is $g(x)=0$?

The term "composition of functions" or "composite function" refers to the combining of functions in a manner where the output from one function becomes the input for the next function (apply one rule, get a result, and then apply the second rule to what you obtained from the first rule).

The notation used for composition is:

$$
(f \circ g)(x)=f(g(x)) \text { and is read " } f \text { composed with } g \text { of } x \text { " or " } f \text { of } g \text { of } x \text { " }
$$

(1) Given:

$$
\begin{aligned}
& f(x)=2 x-4 \\
& g(x)=x^{2}
\end{aligned}
$$

Find:

a) $f(g(3))$
b) $f(g(-2))$
c) $g(f(-5))$
d) $(g \circ f)(7)$
(2) If $f(x)=-9 x-9$ and $g(x)=\sqrt{x-9}$, find $(f \circ g)(10)$
(3) If $f(x)=-4 x+2$ and $g(x)=\sqrt{x-8}$, find $(f \circ g)(12)$
(4) If $f(x)=-3 x+4$ and $g(x)=x^{2}$, find $(g \circ f)(-2)$
\qquad

1. Given this graph of the function $f(x)$:

Find:
a. $f(2)=$
b. $f(0)=$
c. $f(5)=$
d. $f(-5)=$
e. $f(f(-4))=$
e. x when $f(x)=-2$

f. x when $f(x)=4$
2. Using $f(x)=4 x+3$ and $g(x)=x-2$,find:
a. $f(g(5))$
b. $g(f(-6))$
c. $f(f(7))$
d. $g(f(x))$
3. If $f(x)=-2 x+1$ and $g(x)=\sqrt{x^{2}-5}$, find $(g \circ f)(2)$

