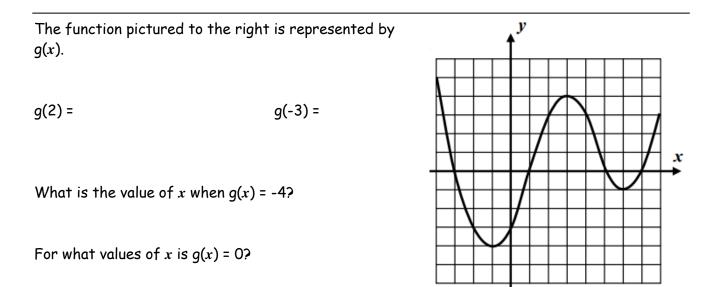
Algebra RH

Essential Question: How do we evaluate composite functions?

Do Now:

Write in function notation.

a)
$$y = 2x + 5$$
 b) $C = 12n + 100$


Evaluate each function.

c)
$$g(n) = 4n - 5$$
; Find $g(6)$
d) $g(n) = n^2 + 4n$; Find $g(2)$

Evaluate each function.

1) k(a) = 4a + 2; Find k(a - 3)2) h(t) = -2t + 2; Find h(-3t)

3)
$$h(n) = 3n + 5$$
; Find $h(-4n)$
4) $h(x) = x^2 + 1$; Find $h(\frac{x}{4})$

Composition of Functions

The term "composition of functions" or "composite function" refers to the combining of functions in a manner where the output from one function becomes the input for the next function (apply one rule, get a result, and then apply the second rule to what you obtained from the first rule).

The notation used for composition is:

 $(f \circ g)(x) = f(g(x))$ and is read "f composed with g of x" or "f of g of x"

(1) Given:

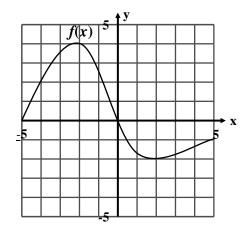
f(x) = 2x - 4 $g(x) = x^2$

 Find:

 a) f(g(3)) b) f(g(-2))

c)
$$g(f(-5))$$
 d) $(g \circ f)(7)$

(2) If
$$f(x) = -9x - 9$$
 and $g(x) = \sqrt{x - 9}$, find $(f \circ g)(10)$


(3) If f(x) = -4x + 2 and $g(x) = \sqrt{x-8}$, find $(f \circ g)(12)$

(4) If f(x) = -3x+4 and $g(x) = x^2$, find $(g \circ f)(-2)$

1. Given this graph of the function f(x):

Find:

- **a**. *f*(2) = **b**. *f*(0) =
- **c**. *f*(5) = **d**. *f*(-5) =
- **e**. *f(f*(-4)) =
- **e**. *x* when f(x) = -2
- **f**. x when f(x) = 4
- 2. Using f(x) = 4x + 3 and g(x) = x 2, find:
 - **a**. f(g(5))
 - **b**. g(f(-6))
 - **c**. f(f(7))
 - **d**. g(f(x))
- 3. If f(x) = -2x+1 and $g(x) = \sqrt{x^2-5}$, find $(g \circ f)(2)$

