Describing Relationships with Exponential Functions

1. The population of fish in a local stream is decreasing at an alarming rate. The original population was 48,000 . After one year, the population was 28,800 . After the 2 nd year the population was 17,280 . Write an exponential function, $\mathrm{P}(t)$, that models this situation where t represents time in years. If this trend continues, how many fish are expected to be living in the stream after the 10th year?
$\mathrm{P}(t)=48000(0.6)^{t}$
$P(10)=48000(0.6)^{10}$
$P(10)=290.237$... \quad About 290 fish are expected after the $10^{\text {th }}$ year.
2. A painting is sold to an art gallery. Over time, the painting increases in value exponentially. After one year, the painting is worth $\$ 1,540$. After the second year, the painting is worth $\$ 1,694$. Write an exponential function that models this situation. What will the painting be worth after seven years?

Years	0	1	2
Value	1400	1540	1694

$$
\begin{aligned}
& P(t)=1400(1.1)^{t} \\
& P(7)=1400(1.1)^{7} \\
& P(7)=\$ 2,728.20
\end{aligned}
$$

$1694 \div 1540=1.1 \rightarrow 1540 \div 1.1=1400$
3. The breakdown of a sample of a chemical compound is represented by the function $p(t)=300(0.5)^{t}$, where $p(t)$ represents the number of milligrams of the substance and t represents the time, in years. In the function $p(t)$, explain what 0.5 and 300 represent.
$0.5 \rightarrow$ the rate at which the compound is decreasing is 50% per year
$300 \rightarrow$ the initial number of milligrams of the substance before it began breaking down

