\qquad

1. $y=x^{2}-2 x-3$

$$
x=\frac{-b}{2 a}=\frac{-(-2)}{2(1)}=1
$$

x	y
-2	5
-1	0
0	-3
1	-4
2	-3
3	0
4	5

Roots: $\{-1,3\}$
$y=x^{2}-2 x-3$

2. $y=x^{2}+2 x+1$

$$
x=\frac{-b}{2 a}=\frac{-2}{2(1)}=-1
$$

x	y
-4	9
-3	4
-2	1
-1	0
0	1
1	4
2	9

Root: $\{-1\}$
$y=x^{2}+2 x+1$

3. $y=x^{2}+4 x+1$

$$
x=\frac{-b}{2 a}=\frac{-4}{2(1)}=-2
$$

x	y
-5	6
-4	1
-3	-2
-2	-3
-1	-2
0	1
1	6

Roots: $\{-3.7,-0.3\}$

$x=-2$

$$
\begin{aligned}
& \text { 4. } y=x^{2}-5 x+4 \\
& 0=x^{2}-5 x+4 \\
& 0=(x-1)(x-4) \\
& x-1=0 x-4=0 \\
& x=1 \quad x=4
\end{aligned}
$$

Roots: $\{1,4\}$

$$
\text { 5. } \begin{aligned}
y & =2 x^{2}-4 \\
0 & =2 x^{2}-4 \\
4 & =2 x^{2} \\
2 & =x^{2} \\
x & = \pm \sqrt{2}
\end{aligned}
$$

$$
x=\sqrt{2} \text { or }-\sqrt{2}
$$

Roots: \{1.4,-1.4\}
6. $y=x^{2}-4 x+7$

$$
0=x^{2}-4 x+7
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(7)}}{2(1)}
\end{aligned}
$$

$$
x=\frac{4 \pm \sqrt{-12}}{2}
$$

You cannot take the square root of a negative number. What does this mean? The related graph does not have any real roots, meaning, there are no x-intercepts.

