$$
\begin{aligned}
x(x+11) & =-24 \\
x^{2}+11 x+24 & =0 \\
(x+3)(x+8) & =0 \\
x+3=0, x+8 & =0 \\
x=-3 \text { or } x & =-8
\end{aligned}
$$

2. x : length of the square (6 meters)

$$
\begin{aligned}
(x+2)(x-2) & =32 \\
x^{2}-4 & =32 \\
x^{2} & =36 \\
x & = \pm 6
\end{aligned}
$$

-6 doesn't make sense for a side length of a square, therefore the answer is 6
3. $x: 1^{\text {st }}$ neg consec int (-5)
$x+1: 2^{\text {nd }}$ neg consec int (-4)

$$
\begin{gathered}
x(x+1)=20 \\
x^{2}+x=20 \\
x^{2}+x-20=0 \\
(x+5)(x-4)=0 \\
x+5=0, x-4=0 \\
x=-5, x=4 \quad 4 \text { is not negative so } x=-5
\end{gathered}
$$

4. $A=1 w$
$A=4(6)$
$A=24 \mathrm{~m}^{2}$

6
The area is doubled by increasing each side by the same amount $4+x$

x : number of units each side is increased by

$$
\begin{gathered}
(x+4)(x+6)=48 \\
x^{2}+10 x+24=48 \\
x^{2}+10 x-24=0 \\
(x+12)(x-2)=0 \\
x+12=0, x-2=0 \\
x=-12, x=2
\end{gathered}
$$

-12 doesn't make sense, therefore the answer is 2
5.

x : length of one leg (5 meters) $x+7$: length of the other leg (12 meters)

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}+(x+7)^{2}=13^{2} \\
& x^{2}+x^{2}+14 x+49=169 \\
& 2 x^{2}+14 x-120=0 \\
& 2\left(x^{2}+7 x-60\right)=0 \\
& (x-5)(x+12)=0 \\
& x-5=0, x+12=0 \\
& x=5, x=-12
\end{aligned}
$$

-12 doesn't make sense for the length of a side of a triangle, therefore the answer is 5
6. x : width of the rectangle (5 ft)
$3 x$: length of the rectangle (15 ft)

$$
\begin{aligned}
(x-1)(3 x+3) & =72 \\
3 x^{2}-3 & =72 \\
3 x^{2} & =75 \\
x^{2} & =25 \\
x & = \pm 5
\end{aligned}
$$

-5 doesn't make sense to represent the width

Dimensions of both rectangles: 5 ft by 15 ft
4 ft by 18 ft
7. x : one number (9)
$14-x$: the other number (5)

$$
\begin{aligned}
x^{2}-(14-x)^{2} & =56 \\
x^{2}-\left(196-28 x+x^{2}\right) & =56 \\
x^{2}-196+28 x-x^{2} & =56 \\
28 x-196 & =56 \\
28 x & =252 \\
x & =9
\end{aligned}
$$

8. $4 x$: one positive number
$5 x$: second positive number

$$
\begin{align*}
4 x(5 x) & =180 \tag{12}\\
20 x^{2} & =180 \\
x^{2} & =9 \\
x & = \pm 3
\end{align*}
$$

-3 is not positive, therefore $x=3$

