Using today's notes and graphs #1-5, complete the following table.

$y = ab^x$	а	b	<i>y</i> -intercept	increasing/decreasing
<i>y</i> = 3 ^x	ĺ	3	1	increasing
$y = \left(\frac{1}{3}\right)^x$	1	13	١	decreasing
$y = 2\left(\frac{2}{3}\right)^x$	2	<u>2</u> 3	2	decreasing
$y = \frac{1}{3} \left(3 \right)^x$	1 3	3	<u> </u>	increasing
$f(x) = 3\left(\frac{1}{2}\right)^x$	3	1/2	3	decreasing

Fill in the blanks below based on the information from the table.

Exponential functions are represented by the equation $y = ab^x$. The graph of an exponential function is a curve.

- $y = ab^x$ will decrease if 0 < b < 1
- The a in $y = ab^x$ represents the y intercept.

3.
$$y = 2\left(\frac{2}{3}\right)^{x}$$
 $\begin{array}{c|cccc}
\times & y \\
-3 & 6.75 \\
-2 & 4.5 \\
-1 & 3 \\
0 & 2 \\
1.\overline{3} \\
2 & .\overline{8} \\
3 & 500
\end{array}$

5. Graph $f(x) = 3\left(\frac{1}{2}\right)^x$ for the given domain: $-2 \le x \le 2$

X	<u>y</u>	
-2	12	
-1	6	
0	3	
1	1.5	
2	.75	

