1. If $f(x)=k x^{2}$, and $f(2)=12$, then k equals

$$
\begin{aligned}
f(2) & =k(2)^{2} \\
12 & =k(4) \\
\mathbf{3} & =\mathbf{k}
\end{aligned}
$$

A) 1
B) 2
C) 3
D) 4
2. If $f(x)=3 x+4$, find $f(-4)$

$$
\begin{aligned}
& f(-4)=3(-4)+4 \\
& f(-4)=-12+4 \\
& f(-4)=-8
\end{aligned}
$$

3. If $\mathrm{f}(x)=3 x+2$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}-3$, evaluate $\mathrm{f}(\mathrm{g}(\mathrm{x})$).

$$
\begin{aligned}
& f(x)=3 x+2 \\
& f(x-3)=3(x-3)+2 \\
& f(x-3)=3 x-9+2 \\
& f(x-3)=3 x-7
\end{aligned}
$$

4. Using the functions $f(x)=3 x$ and $g(x)=x-4$, demonstrate that the composition of these functions is not commutative.

$$
\begin{array}{ll}
f(x)=3 x & g(x)=x-4 \\
f(x-4)=3(x-4) & g(3 x)=3 x-4 \\
f(x-4)=3 x-12 & \\
f(g(x))=3 x-12 & \neq \\
g(f(x))=3 x-4
\end{array}
$$

5. Given the function rule $\mathrm{f}(x)=x+9$, find the range corresponding to the domain, $\{-3,4,6,8\}$.

x	$x+9$	$f(x)$
-3	$-3+9$	6
4	$4+9$	13
6	$6+9$	15
8	$8+9$	17

The range is $\{6,13,15,17\}$
6. A caricaturist sets up an easel at a craft fair and quickly sketches portraits. The function below determines the amount of money, Q, she will receive at the end of the day after sketching m people. Given the function $Q(m)=8 m-15$:
(a) Find $Q(3)$ and explain its meaning in the context of the problem.
$\mathrm{Q}(3)$ represents the amount of money after she sketches 3 people.
$Q(3)=8(3)-15$
$=24-15$
$=9$ She earns $\$ 9$ from sketching 3 people
(b) Find m when $Q(m)=41$ and explain its meaning in the context of the problem. $Q(m)=41$ represents the amount of money the caricaturist earns from sketching m people. She earns $\$ 41$.
$\begin{aligned} & 41=8 m-15 \\ &+15 \quad+15 \\ & \frac{56}{8}=\frac{8 m}{8} \\ & 7=m \quad \text { She sketched } 7 \text { people and earned } \$ 41 .\end{aligned}$
7. A company produces tote bags. The annual fixed costs for producing the bags are $\$ 12,000$ in addition to the variable costs which are $\$ 3$ per tote bag.
(a) Write a function $\boldsymbol{C}(\boldsymbol{b})$ that describes the total cost, \boldsymbol{C}, of producing \boldsymbol{b} bags.
$C(b)=12,000+3 b$
$\mathbf{C}(b)$: total expenditures
b: \# of bags
(b) Find the cost of producing 625 tote bags.

$$
\begin{aligned}
C(625) & =12,000+3(625) \\
& =12,000+1875
\end{aligned}
$$

$$
=13,875 \quad \text { The company spends } \$ 13,875 \text { in order to produce } 625 \text { totes }
$$

(c) Find how many tote bags can be produced with an annual budget of $\$ 14,223$.

$$
\begin{gathered}
14,223=12,000+3 b \\
-12,000-12,000 \\
\frac{2223}{3}=\frac{3 b}{3}
\end{gathered}
$$

$$
741 \text { = b } \quad \text { The company can make } 741 \text { totes with } \$ 14,223 .
$$

8. $f(0)=3, f(1)=5, d=2$ explicit: $\quad f(n)=5+2(n-1)-->f(n)=2 n+3$

$$
\text { recursive: } \quad f(n)=f(n-1)+2
$$

I. $f(n)=2 n+3--$ yes
II. $f(n)=5 n-3--n o$
d) I and III
III. $f(n)=f(n-1)+2$ where $f(0)=3$-- yes
9. $26-10=16 \div 2=8<--d$
$a_{n}=-6+8(n-1)$
or
$a_{n}=8 n-14$

n	1	2	3	4	5
a_{n}	-6	2	10	18	26

10. $2.75,5.5,8.25, \underline{11}, 13.75 \quad(d=2.75)$
