\qquad

1. $\mathrm{D}=\mathrm{RT}$
$\mathrm{D}=(80)(3.5)$
$\mathrm{D}=280 \mathrm{~km}$
2. $\mathrm{D}=\mathrm{RT}$
$600=R(8)$
$75 \mathrm{mph}=\mathrm{R}$
3. $\mathrm{D}=\mathrm{RT}$ $400=75 \mathrm{~T}$
$51 / 3 \mathrm{hrs}=\mathrm{T}$ or 5 hrs and 20 min .

Greg has the faster rate of speed. He can run about 2 tenths of a mile faster than Dave in 1 hour. His rate of speed is greater than Dave's.

x : number of hours (time)
Distance of A + Distance of B = Total Distance of A and B

$$
\text { RT }+ \text { RT }=\text { Total D }
$$

$$
\begin{aligned}
800 \mathrm{x}+1000 \mathrm{x} & =9000 \\
1800 \mathrm{x} & =9000 \\
\mathrm{x} & =5
\end{aligned}
$$

It took 5 hours for them to be 9000 miles apart.

x : number of hours (time)
Distance of A + Distance of B $=$ Total Distance of A and B

$$
\text { RT }+\mathrm{RT}=\text { Total } \mathrm{D}
$$

$$
\begin{aligned}
40 \mathrm{x}+50 \mathrm{x} & =1035 \\
90 \mathrm{x} & =1035 \\
\mathrm{x} & =11.5
\end{aligned}
$$

It took 11 hours and 30 min for the two trains to pass each other.
8. A
x : rate of train A
$x+15$: rate of train B
Distance of A + Distance of B $=$ Total Distance of A and B

$$
\begin{aligned}
\text { RT }+ \text { RT } & =\text { Total D } \\
\mathrm{x}(11)+(\mathrm{x}+15)(11) & =1265 \\
11 \mathrm{x}+11 \mathrm{x}+165 & =1265 \\
22 \mathrm{x}+165 & =1265 \\
22 \mathrm{x} & =1100 \\
\mathrm{x} & =50
\end{aligned}
$$

The rate of train A is $50 \mathbf{~ m p h}$
The rate of train B is 65 mph
9. A 8 am $x+2$: time of train A

x : time of train B
Distance of $\mathrm{A}=$ Distance of B

$$
\mathrm{RT}=\mathrm{RT}
$$

$$
\begin{aligned}
45(\mathrm{x}+2) & =54 \mathrm{x} \\
45 \mathrm{x}+90 & =54 \mathrm{x} \\
90 & =9 \mathrm{x} \\
10 & =\mathrm{x} \quad \leftarrow \text { Train B will take } 10 \text { hours to catch } \mathrm{A}
\end{aligned}
$$

Train B will catch Train A at 8 pm (10 hrs from 10 am)

10. $\underset{20+\mathrm{x}}{\mathrm{A}} 6 \mathrm{hrs}$
$x:$ rate of train B (local)
$x+20:$ rate of train A (express)
$\xrightarrow[\mathrm{X}]{\mathrm{B}} 9 \mathrm{hrs}$

$$
\begin{aligned}
\text { Distance of } \mathrm{A} & =\text { Distance of } \mathrm{B} \\
\mathrm{RT} & =\mathrm{RT}
\end{aligned}
$$

$$
\begin{aligned}
(x+20)(6) & =x(9) \\
6 x+120 & =9 x \\
120 & =3 x \\
40 & =x
\end{aligned}
$$

Train B (the local) travels 40 mph
Train A (the express) travels 60 mph

120 miles
x : rate of boat A
Both boats traveled from noon to 6 pm (time $=6 \mathrm{hrs}$)
Distance of A + Distance of B = Total Distance of A and B RT + RT $=$ Total D

$$
\begin{gathered}
x(6)+(9)(6)=120 \\
6 x+54=120 \\
6 x=66 \\
x=11
\end{gathered}
$$

The rate of boat A is 11mph
12. $\frac{\mathrm{A}}{350} \mathrm{mph}$
x : time of plane A
$\mathrm{x}+2$: time of plane B (slower plane)
$\stackrel{\mathrm{B}}{250} \mathrm{mph}$
Distance of $\mathrm{A}=$ Distance of B

$$
\mathrm{RT}=\mathrm{RT}
$$

$$
\begin{aligned}
350(x) & =250(x+2) \\
350 x & =250 x+500 \\
100 x & =500 \\
x & =5
\end{aligned}
$$

It takes 5 hours for plane A to catch plane B.

Car A's speed is 48 mph
Car B's speed is 60 mph
14. $\xrightarrow[\mathrm{x} \text { mph }]{2 \mathrm{hrs}} \mid \xrightarrow[\mathrm{x}-30 \mathrm{mph}]{3 \mathrm{hrs}}$

660 miles
x : rate of speed before the plane slowed down
Distance of A + Distance of A = Total Distance of A

$$
\text { RT }+ \text { RT }=\text { Total D }
$$

$$
\begin{aligned}
\mathrm{x}(2)+(\mathrm{x}-30)(3) & =660 \\
2 \mathrm{x}+3 \mathrm{x}-90 & =660 \\
5 \mathrm{x}-90 & =660 \\
5 \mathrm{x} & =750
\end{aligned}
$$

$$
x=150
$$

The rate of the plane before it slowed down was 150 mph

$$
\begin{aligned}
& \text { 13. } \underset{\mathrm{x}}{\mathrm{~A}} 5 \mathrm{hrs} \\
& \mathrm{x} \text { : rate of car A (slower car) } \\
& \mathrm{x}+12 \text { : rate of car B (faster car) } \\
& \xrightarrow[\mathrm{x}+12]{\mathrm{B}} 4 \mathrm{hrs} \\
& \text { Distance of } \mathrm{A}=\text { Distance of } \mathrm{B} \\
& \text { RT }=\text { RT } \\
& x(5)=(x+12)(4) \\
& 5 x=4 x+48 \\
& x=48
\end{aligned}
$$

