STATION #1 – *Linear Inequalities*

1. Write an inequality that represents the graph pictured below.

2. Write a system of inequalities that represent the graph pictured below.

- 3. A clothing manufacturer has 1000 yards of cotton to make shirts and pajamas. A shirt requires 1 yd. of fabric and a set of pajamas requires 2 yd. of fabric. It takes 2 hours to make a shirt and 3 hours to make a pair of pajamas, and there are only 1600 hours available to make the clothing.
 - a) Write a system of inequalities that can be used to determine the number of shirts, *x*, and the number of sets of pajamas, *y*, the clothing manufacturer can make given the constraints above.
 Helpful Hint: One inequality represents the amount of fabric used and the other represents the amount of hours it takes to produce the clothing.
 - b) Using your system, determine if it is possible to make 300 shirts and 350 pairs of pajamas.

STATION #2 – Function Notation and Sequences

- 1. If $h(x) = x^4 5x$ then find h(-1).
- 2. Consider the linear function **f**(**x**) shown here.
 - a) Find the value of f(-2).
 - b) For what value of x does f(x) = 3?
 - c) For what value of x does f(x) = -3?

3. A soccer coach is getting her team ready for the season by introducing them to High Intensity Interval Training (HIIT). The table below represents a list of exercises for an HIIT training circuit and the length of time that must be spent on each exercise before the athlete gets a short time to rest. The rest time increases as the athletes complete more exercises in the circuit.

Exercise #	Length of Exercise Time	Length of Rest Time
Exercise 1	0.5 minute	0.25 minute
Exercise 2	0.75 minute	0.5 minute
Exercise 3	1 minute	1 minute
Exercise 4	1.25 minutes	2 minutes
Exercise 5	1.5 minutes	4 minutes

- a) Write an explicit rule to represent the amount of minutes spent exercising, *E(n)*, on the *n*th exercise.
- b) Write an explicit rule to represent the amount of minutes spent resting, **R**(**n**), after the *n*th exercise.
- 4. Write the first four terms of the recursive sequence defined by the function below. $f(n) = 8 - \frac{1}{2}f(n-1)$ and f(1) = 16

STATION #3 – Exponential Functions

- The number of visitors to a museum has been decreasing by approximately 3% each year since 2012. The number of visitors to the museum recorded in 2012 was 132,876 people.
 - a) Write an equation that can be used to predict the number of visitors, *V(t)*, since 2012.
 - b) What is the *decay rate*? _____ What is the *decay factor*? _____
 - c) How many people are expected to visit the museum in 2017?
 - d) In what year, would the number of people visiting the museum drop below 75,000?
- 2. Determine whether a *linear or exponential* model would best represent the situation presented.
 - a) A man deposits \$350 every two weeks into his savings account.
 - b) The population of a species quadruples every year.
 - c) A loan of \$780 is accumulating interest annually at a rate of 7%.
- 3. Consider the graphs of $y = 7(1.2)^x$ and $y = 5(4)^x$. Which graph is growing at a faster rate? How do you know?

STATION #4 – Factoring Polynomial Expressions

- 1. Factor each polynomial expressions completely.
 - a) $3x^4 21x^3 + 30x^2$ b) $x^4 13x^2 14$ c) $2x^8 32$
- 2. Which expressions are *not* equivalent to $4x^2 12x 40$?
 - A. (x-5)(x+2)B. $4(x^2-3x-10)$ C. 4x(x-12-40)D. 2(2x-10)(x+2)E. (x-5)(4x+8)F. $4(x^2-2x-5)$
- 3. If $x^2 + 2x + k = (x + 5)(x + p)$, then:
 - (1) p = 3 and k = -5 (2) p = -5 and k = -3
 - (3) p = -3 and k = 15 (4) p = -3 and k = -15
- 4. The factors of $a^2 + b^2$ are:
 - (1) (a+b)(a-b) (2) a(a+b)
 - (3) (a + b)(a + b) (4) The expression cannot be factored
- 5. Annie represented $p^4 1$ in factored form as (p + 1)(p 1)(p + 1)(p 1). Do you agree or disagree with Annie? Explain your reasoning.