8 Algebra CC - Quarter Test Extra Practice
 ANSWER KEY

1. Categorize each numerical expression below as rational or irrational. Explain your response.
a) $\sqrt{12}+\sqrt{4}$
b) $-\frac{5}{7}+9 . \overline{4}$
c) $(\sqrt{10})^{2}$
$\sqrt{12}=$ irrational
$\sqrt{4}=2$ = rational
Irrational
The sum of a rational and irrational number is always irrational.

Rational
Both numbers are rational
because one number is a fraction and the other is a repeating decimal. The sum of two rational numbers is always a rational number.

$$
\sqrt{10} \cdot \sqrt{10}=\sqrt{100}=10
$$

Rational
The product of two irrational numbers may be rational or irrational. In this case, it's rational because the square root of 100 is 10 .
2. For which value of \boldsymbol{Q} and \boldsymbol{R} is $\boldsymbol{Q}+\boldsymbol{R}$ a rational number?
(1) $Q=\frac{1}{\sqrt{2}}$ and $R=\frac{1}{\sqrt{3}}$
(2) $Q=\frac{1}{\sqrt{16}}$ and $R=-\frac{1}{\sqrt{9}}$
$\frac{1}{\sqrt{16}}+-\frac{1}{\sqrt{9}}$
$\frac{1}{4}+-\frac{1}{3}=-\frac{1}{12}$
$\mathbf{R}+\mathbf{R}=\mathbf{R}$
3. Ms. Gizzi asked her class "Is the product of $6 . \overline{2}$ and $\sqrt{5}$ rational or irrational?" Patrick answered that the product would be irrational. State whether Patrick is correct or incorrect. Justify your reasoning. Patrick is correct. The number $6 . \overline{2}$ is a rational number because it is a repeating decimal and $\sqrt{5}$ is an irrational number because it is a non-terminating, non-repeating decimal. The product of a rational number and an irrational number is always irrational.
4. When solving the equation $\mathbf{3}(\mathbf{x}-\mathbf{2}) \mathbf{+ 1 0}=\mathbf{4 x} \mathbf{- 2 0}$, Jennifer wrote $\mathbf{3 (x - 2)} \mathbf{= 4 x} \mathbf{- 3 0}$ as her first step. Name the property that justifies Jennifer's first step.

Subtraction Property of Equality

$$
\begin{gathered}
3(x-2)+10=4 x-20 \\
-10 \quad-10 \\
3(x-2)=4 x-30
\end{gathered}
$$

5. To watch a varsity basketball game, spectators must buy a ticket at the door. The cost of an adult ticket is $\$ 10.00$ and the cost of a student ticket is $\$ 3.50$. If the number of adult tickets sold is represented by \boldsymbol{a} and student tickets sold by \boldsymbol{s}, write an expression that represents the amount of money collected at the door from the ticket sales.
a : the number of adult tickets sold
s : the number of student tickets sold
$10 a+3.50 s$
Multiply the number of tickets by the cost per ticket to calculate the total cost of tickets.
6. A moving truck rental company charges a fixed fee for renting a truck for a certain number of hours and an overage charge for each hour used beyond that amount. A person renting a truck is charged $\$ 150$ for all hours up to and including 6 hours and $\$ 15$ for each additional hour. If \boldsymbol{g} represents the total number of hours, which expression could represent the total cost of renting a truck for 6 hours or more?

Important Information:

(1) $150+15 g$
(2) $150+15(g-6)$
(3) $15+150(g-6)$
(4) $150+15(6-g)$

Fixed Fee: $\$ 150$ (includes 6 hours)
g: total number of hours for the rental
$\$ 15$ charge for each additional hour past 6 hours
Let's test out a situation...assume the truck was rented for a total of 10 hours ($g=10$). The first 6 hours cost $\$ 150$. The 4 additional hours cost $\$ 60(4 \times 15)$. The total cost is $\$ 210$. Cost Calculation: $\$ 150+\$ 15(4)$

Expression (2):	$\mathbf{1 5 0}+\mathbf{1 5}(\boldsymbol{g}-\mathbf{6})$
$\mathbf{g = 1 0}$	$150+15(10-6)$
	$150+15(4)$
	$\$ 210$

7. Fred is given a rectangular piece of paper. The length of Fred's piece of paper is represented by $\mathbf{3 x - 1 0}$ and the width is represented by $\mathbf{x}^{2}+\mathbf{5 x - 1}$. Write a simplified polynomial expression to represent the area of the rectangle.

$\mathrm{x}^{2}+5 \mathrm{x}-1$	$3 \mathrm{x}-10$	3x	x^{2}	5 x	-1
			$3 x^{3}$	$15 x^{2}$	-3x
		-10	$-10 x^{2}$	-50x	10

$$
3 x^{3}+5 x^{2}-53 x+10 \text { square units }
$$

8. When $(x+1)^{2}$ is subtracted from $3 x^{2}$, the result is
(1) $2 x^{2}-2 x-1$
(2) $2 x^{2}+2 x+1$
(3) $2 x^{2}+1$
(4) $2 x^{2}-1$

$$
\begin{array}{ll}
3 x^{2}-(x+1)^{2} & \text { From comes first! Write the expression starting with } 3 x^{2} \\
3 x^{2}-[(x+1)(x+1)] & \text { Follow the order of operations. Square the binomial before subtracting. } \\
3 x^{2}-\left(x^{2}+x+x+1\right) & \text { Keep the product in (). } \\
3 x^{2}-\left(x^{2}+2 x+1\right) & \text { In order to subtract, you must distribute the }- \text { sign. } \\
3 x^{2}-x^{2}-2 x-1 & \\
\mathbf{2} \mathbf{x}^{\mathbf{2}-\mathbf{2 x}-\mathbf{1}} &
\end{array}
$$

9. Solve for \boldsymbol{x} in each equation below.
a) $\frac{x+2}{6}+\frac{x}{4}=\frac{x+16}{12}$
b) $2 a-b x=c$
c) $r=\frac{1}{4} a x^{2}$

There are a couple of different ways to solve this problem. I decided to add the fractions on the left side and create a proportion.

$$
\begin{array}{rl}
2 a-\mathrm{b} x=c & -2 a \\
-2 a & r \\
\frac{-\mathrm{b} x}{-\mathrm{b}}=\frac{\mathrm{c}-2 a}{-\mathrm{b}} & \\
\boldsymbol{x}=\frac{\mathrm{c}-2 a}{-b} & \mathbf{4} r=\frac{\mathbf{4}}{\mathbf{1}} \bullet \frac{1}{4} a x^{2} \\
\frac{4 r}{a} & =\frac{a x^{2}}{a}
\end{array}
$$

$$
\frac{2 x+4}{12}+\frac{3 x}{12}=\frac{x+16}{12}
$$

$$
\frac{4 r}{a}=x^{2}
$$

$$
\frac{5 x+4}{12}=\frac{x+16}{12}
$$

$12(x+16)=12(5 x+4)$
$12 x+192=60 x+48$

$$
192=48 x+48
$$

$$
144=48 x
$$

$$
3=x
$$

Another way to solve this problem is to multiply both sides of the equation by the LCD (12).

$$
\begin{aligned}
& \mathbf{2}\left(\frac{x+2}{6}\right)+\mathbf{3}\left(\frac{x}{4}\right)=\frac{1}{\mathbf{1 2}}\left(\frac{x+16}{12}\right) \\
& 2(x+2)+3 x=x+16 \\
& 2 x+4+3 x=x+16 \\
& 5 x+4=x+16 \\
& 4 x+4=16 \\
& 4 x=12 \\
& \boldsymbol{x}=\mathbf{3}
\end{aligned}
$$

10. Kevin wants to make a snack mix made up of almonds and raisins. He wants his mix to contain double the amount of almonds as compared to raisins. Almonds cost $\$ 12$ per pound and raisins cost $\$ 8$ per pound. If Kevin has $\$ 40$ to spend on the mix, how many pounds of each item can he purchase?
x: \# of lbs of raisins
$\mathbf{2 x}$: \# of lbs of almonds

	\$ per lb	\# of lbs	\$ spent on each item	
raisins	$\$ 8$	x	$82 x=40$	
almonds	$\$ 12$	$2 x$	$12(2 x)$	$x=1.25$

Kevin can purchase 1.25 lbs of raisins and 2.5 lbs of almonds.

Check:
1.25 lbs of raisins costing $\$ 8$ per $\mathrm{lb}=\$ 10 \quad(1.25 \times 8)$
2.5 lbs of almonds costing
\$12 per lb = \$30 (2.5×12)

