8 Algebra CC – Quarter Test Extra Practice ANSWER KEY

1. Categorize each numerical expression below as rational or irrational. Explain your response.

b) $-\frac{3}{7} + 9.4$	c) $(\sqrt{10})^2$
Rational Both numbers are rational because one number is a fraction and the other is a repeating decimal. The sum of two rational numbers is always a rational number.	$\sqrt{10} \bullet \sqrt{10} = \sqrt{100} = 10$ Rational The product of two irrational numbers may be rational or irrational. In this case, it's rational because the square root of 100 is 10.
	Both numbers are rational because one number is a fraction and the other is a repeating decimal. The sum of two rational numbers is always a

2. For which value of **Q** and **R** is **Q** + **R** a rational number?

(1)
$$Q = \frac{1}{\sqrt{2}}$$
 and $R = \frac{1}{\sqrt{3}}$
(2) $Q = \frac{1}{\sqrt{16}}$ and $R = -\frac{1}{\sqrt{9}}$
(3) $Q = -\frac{1}{\sqrt{6}}$ and $R = -\frac{1}{\sqrt{5}}$
(4) $Q = \frac{1}{\sqrt{25}}$ and $R = \frac{1}{\sqrt{3}}$
(5) $Q = \frac{1}{\sqrt{6}}$ and $R = -\frac{1}{\sqrt{5}}$
(6) $Q = \frac{1}{\sqrt{25}}$ and $R = \frac{1}{\sqrt{3}}$
(7) $R + R = R$

3. Ms. Gizzi asked her class "Is the product of $6.\overline{2}$ and $\sqrt{5}$ rational or irrational?" Patrick answered that the product would be irrational. State whether Patrick is correct or incorrect. Justify your reasoning.

Patrick is correct. The number 6.2 is a rational number because it is a repeating decimal and $\sqrt{5}$ is an irrational number because it is a non-terminating, non-repeating decimal. The product of a rational number and an irrational number is always irrational.

4. When solving the equation 3(x - 2) + 10 = 4x - 20, Jennifer wrote 3(x - 2) = 4x - 30 as her first step. Name the property that justifies Jennifer's first step.

Subtraction Property of Equality 3(x-2) + 10 = 4x - 20-103(x-2) = 4x - 30

- 5. To watch a varsity basketball game, spectators must buy a ticket at the door. The cost of an adult ticket is \$10.00 and the cost of a student ticket is \$3.50. If the number of adult tickets sold is represented by *a* and student tickets sold by *s*, write an expression that represents the amount of money collected at the door from the ticket sales.
 - *a*: the number of adult tickets sold
 - s: the number of student tickets sold

10a + 3.50s

Multiply the number of tickets by the cost per ticket to calculate the total cost of tickets.

6. A moving truck rental company charges a fixed fee for renting a truck for a certain number of hours and an overage charge for each hour used beyond that amount. A person renting a truck is charged \$150 for all hours up to and including 6 hours and \$15 for each additional hour. If **g** represents the total number of hours, which expression could represent the total cost of renting a truck for 6 hours or more?

		Important Info	ormation:	
(1) 150 + 15 <i>q</i>	(2) $150 + 15(q - 6)$	Fixed Fee: \$1	50 (includes 6 hours)	
(1) 100 109	(-) 100 × 10(g - 0)	g : <u>total numb</u>	<u>er</u> of hours for the rental	
(3) $15 + 150(g - 6)$	(4) $150 + 15(6 - g)$	\$15 charge for each additional hour past 6 hours		
		for a total of 1 \$150. The 4 a	a situationassume the truck was rented 0 hours ($g = 10$). The first 6 hours cost dditional hours cost \$60 (4 x 15). The 210. Cost Calculation: \$150 + \$15(4)	
		Expression (2): 150 + 15(g - 6)		
		<i>g</i> = 10	150 + 15 <mark>(10</mark> – 6)	
			150 + 15(4)	
			\$210	

7. Fred is given a rectangular piece of paper. The length of Fred's piece of paper is represented by 3x - 10 and the width is represented by $x^2 + 5x - 1$. Write a simplified polynomial expression to represent the *area* of the rectangle.

 $3x^{3} + 5x^{2} - 53x + 10$ square units

8. When $(x + 1)^2$ is subtracted from $3x^2$, the result is

- (1) $2x^2 2x 1$ (2) $2x^2 + 2x + 1$
- (3) $2x^2 + 1$ (4) $2x^2 1$

 $3x^2 - (x + 1)^2$ From comes first! Write the expression starting with $3x^2$

- $3x^2 [(x + 1)(x + 1)]$ Follow the order of operations. Square the binomial before subtracting.
- $3x^{2} (x^{2} + x + x + 1)$ $3x^{2} (x^{2} + 2x + 1)$ Keep the product in (). In order to subtract, you must distribute the – sign.

 $2x^2 - 2x - 1$

 $3x^2 - x^2 - 2x - 1$

9. Solve for *x* in each equation below.

a)
$$\frac{x+2}{6} + \frac{x}{4} = \frac{x+16}{12}$$
b)
$$2a - bx = c$$
c)
$$r = \frac{1}{4}ax^{2}$$
There are a couple of different ways to solve this problem. I decided to add the fractions on the left side and create a proportion.
$$\frac{2a}{2}\left(\frac{x+2}{6}\right) + \frac{3}{3}\left(\frac{x}{4}\right) = \frac{x+16}{12}$$

$$\frac{2x+4}{12} + \frac{3x}{12} = \frac{x+16}{12}$$

$$\frac{5x+4}{12} = \frac{x+16}{12}$$

$$\frac{5x+4}{12} = \frac{x+16}{12}$$

$$\frac{5x+4}{12} = \frac{x+16}{12}$$

$$\frac{4r}{a} = x^{2}$$

$$\frac{\sqrt{4r}}{a} = \sqrt{x^{2}}$$

$$\frac{\sqrt{4r}}{a} = \sqrt{x^{2}}$$

$$\frac{\sqrt{4r}}{a} = x$$
Another way to solve this problem is to multiply both sides of the equation by the LCD (12).

$${}^{2}_{12}\left(\frac{x+2}{6}\right) + {}^{3}_{12}\left(\frac{x}{4}\right) = {}^{1}_{12}\left(\frac{x+16}{12}\right)$$

$$2(x+2) + 3x = x + 16$$

$$2x + 4 + 3x = x + 16$$

$$5x + 4 = x + 16$$

$$4x + 4 = 16$$

$$4x = 12$$

$$x = 3$$

10. Kevin wants to make a snack mix made up of almonds and raisins. He wants his mix to contain double the amount of almonds as compared to raisins. Almonds cost \$12 per pound and raisins cost \$8 per pound. If Kevin has \$40 to spend on the mix, how many pounds of each item can he purchase?

x: # of lbs of r	f lbs of raisins 8x + 12(2x) = 40 of lbs of almonds		Check: 1.25 lbs of raisins costing		
	annonus			8x + 24x = 40	$\$8 \text{ per lb} = \$10 (1.25 \times 8)$
_	\$ per lb	# of lbs	\$ spent on each item	32x = 40	
raisins	\$8	х	8x	52X - 40	2.5 lbs of almonds costing
almonds	\$12	2x	12(2x)	x = 1.25	\$12 per lb = \$30 (2.5 x 12)
aimonds	\$12	2x	12(2x)	x = 1.25	$212 \text{ per in} = 230 (2.5 \times 12)$

\$10 + \$30 = \$40