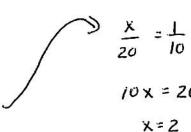
Essential Question: How do we solve equations with rational expressions?

Do Now: Solve for x. $\frac{4x}{5} - \frac{3x}{4} = \frac{1}{10}$

$$\frac{4x}{5} - \frac{3x}{4} = \frac{1}{10}$$

$$\frac{\binom{4}{4}\binom{4x}{5} - \binom{5}{5}\binom{3x}{4} = \frac{1}{10}}{\binom{16x}{20} - \frac{15x}{20} = \frac{1}{10}}$$

$$\frac{\binom{16x-15x}{20} = \frac{1}{10}}{\binom{16x-15x}{20} = \frac{1}{10}}$$



$$\frac{x}{20} = \frac{1}{10}$$
 [create a proportion]

 $10x = 20$ [cross multiply]

Why does each product "clear" the fraction?

Let's think about another way to solve the problem from the Do Now. Let's begin by simplifying the expressions below.

		8	<u> </u>
1			
	alle		
	D	7	
		5)	
4			

a. $\frac{5}{20}\left(\frac{1}{4}\right)$	b. $\frac{3}{15} \left(\frac{x}{8} \right)$
$\frac{5}{1} \longrightarrow 5$	$\frac{3x}{1} \rightarrow 3x$
$c. \frac{\frac{2}{16} \left(\frac{3x}{8}\right)}{\frac{6\times}{1}} \longrightarrow 6\times$	d. $12\left(\frac{x}{6} + \frac{x}{3}\right)$ $\frac{12\left(\frac{x}{6} + \frac{x}{3}\right)}{1\left(\frac{x}{3}\right)} + \frac{12\left(\frac{x}{3}\right)}{1\left(\frac{x}{3}\right)}$ $2x + 4x \rightarrow 6x$

Key Concept:

MULTIPLE The factor is a of the denominator, . therefore the denominator can cross divide and become 1.

Yes! Can we solve rational equations using this key concept?

Consider the following equation from the Do Now ...

$$\frac{4x}{5} - \frac{3x}{4} = \frac{1}{10}$$

What integer value would "eliminate" 'all denominators?

Solving Rational Equations using the LCD:

- · Identify the least common denominator (LCD)
- Multiply each term of the equation by the LCD and simplify
- Solve the <u>equivalent equation</u> (NOTE: the denominator has been eliminated!)
- · Check your answer!

Put in calculator and make sure

$$\left| \frac{4 \cdot 2}{5} - \frac{3 \cdot 2}{4} \right| = \frac{1}{10}$$

$$\frac{4x}{5} - \frac{3x}{4} = \frac{1}{10}$$

$$\frac{4}{20}\left(\frac{4x}{x}\right) - \frac{25}{20}\left(\frac{3x}{x}\right) = \frac{2}{20}\left(\frac{1}{x^2}\right)$$

$$4(4x) - 5(3x) = 2$$

 $16x - 15x = 2$
 $x = 2$

Let's try solving some more rational equations. Check your answer!

1)
$$\frac{x}{3} - \frac{2x}{5} = \frac{-7}{15}$$

$$\frac{5}{15}\left(\frac{x}{3}\right) - \frac{3}{15}\left(\frac{2x}{3}\right) = \frac{-7}{15}\left(45\right)$$

$$5x - 6x = -7$$

 $-x = -7$
 -1

3)
$$\frac{x+5}{5} + \frac{3x}{10} = 7$$

2)
$$\frac{x}{3} = \frac{x}{2} + 2$$

$$^{2}\omega\left(\frac{x}{z}\right)=\overset{3}{\omega}\left(\frac{x}{z}\right)+6(2)$$

$$2x = 3x + 12$$

 $-3x - 3x$

$$\frac{-x}{-1} = \frac{12}{-1}$$

4)
$$\frac{2x}{5} - \frac{x}{4} = \frac{3}{2}$$

$$|\mathcal{B}\left(\frac{x+5}{8}\right) + |\mathcal{B}\left(\frac{3x}{10}\right) = 10(7)$$

$$2(x+5) + 3x = 70$$

 $2x + 10 + 3x = 70$
 $5x + 10 = 70$

$$\frac{4}{20}\left(\frac{2x}{8}\right) - \frac{5}{20}\left(\frac{x}{4}\right) = \frac{10}{20}\left(\frac{3}{2}\right)$$

TAKE AWAY

In a rational equation, multiplying both sides of the equation by the <u>LCD</u> creates an equivalent equation "without any fractions". (least common