Essential Question: How can we use the properties of equality to solve equations?

Do Now: Compare and Contrast A and B.		Compare	Contrast
A. $2x - 5 + 3x$	B. $2x - 5 + 3x = 25$	Both have	the equation
5x-5	5x-5 = 25	an expression that can	can be solved
	5x = 30	be	A expression
a.	× = 6	simplified	B equation

Solving Equations

The properties of equality justify the series of inverse operations that are performed in order to solve an equation.

Addition Property of Equality	If $a = b$, then $a + c = b + c$	
Subtraction Property of Equality	If a = b, then a - c = b - c	
Multiplication Property of Equality	If a = b, then ac = bc	
Division Property of Equality	If a = b, then $\frac{a}{c} = \frac{b}{c}$, c $\Box 0$	

Examples:

Equation	Justification	Check
×+9=17 -9-9 ×=8	subtraction property of equality	x+9=17 8+9=17 17=17 V
x-10 = 50 +10 +10 X = 60	addition property of equality	x-10 = 50 60 -10 = 50 50 = 50

Equation	Justification	Check
$\frac{4x = 68}{4}$ $x = 17$	division property of equality	4x = 68 4(17) = 68 68 = 68
$\frac{x}{-3} = 2$ $-3\left(\frac{x}{-3}\right) = (2)(-3)$ $x = -6$	multiplication property of equality	$\frac{x}{-3} = 2$ $\frac{-6}{-3} = 2$ $2 = 2 \checkmark$

More Examples:

$$*1. -y=8$$
 $-7 -1$
 $y=-8$

2.
$$\frac{3}{4}x = 18$$

 $\frac{4}{3}\left(\frac{3}{4}\right)x = \frac{6}{18}\left(\frac{4}{3}\right)$
 $x = 24$

3.
$$-5x - 4 = 16$$
 $+4 + 4$
 $-5x = 20$
 -5
 $x = -4$

4.
$$2(3x-5)=-4$$
 $6x-10=-4$
 $+10$
 $+10$
 $6x=6$
 6
 $x=1$

$$5. \frac{1}{2}m + 4 - \frac{5}{2}m = -3$$

$$-\frac{4}{2}m + 4 = -3$$

$$-4 - 4$$

$$-\frac{2m}{-2} = -\frac{7}{-2}$$

$$m = \frac{7}{2}$$

6.
$$5x - 3(x - 1) = -15$$

$$5x - 3x + 3 = -15$$

$$2x + 3 = -15$$

$$-3 - 3$$

$$\frac{2x}{2} = -\frac{18}{2}$$

$$x = -9$$

THINK ABOUT THIS....

The equation, 7(x-9) = -42 is solved in two different ways. Examine each method below.

1st Method

$$7(x-9) = -42$$

$$7x-63 = -42$$

$$+63+63$$

$$7x = 21$$

$$7x = 21$$

$$7x = 3$$

$$7x = 21$$

$$7x =$$

What steps were taken in each method? Does performing the steps in a different order affect the solution?

Looking at the second method used to solve the equation, how might this method help you solve the equation below?

$$\frac{3}{7}(5x-2)=12$$
 divide by $\frac{3}{7}$ (which is the same as multiplying by its reciprocal, $\frac{7}{3}$)

 $\frac{7}{3} \cdot \frac{3}{7}(5x-2) = (12)(\frac{7}{3})$
 $\frac{3}{7}(5x-2) = (12)(\frac{7}{3})$
 $\frac{3}{7}(5x-2) = 12$
 $\frac{3}{7}(30-2) = 12$
 $\frac{3}{7}(28) = 12$
 $\frac{3}{7}(28) = 12$
 $\frac{3}{7}(28) = 12$

TODAY'S TAKE AWAY...

We use <u>properties of equality</u> to solve equations. The solution set to an equation is the value(s) of the variable that makes the equation a <u>true</u> statement.