**Essential Question:** What is function notation? How do we evaluate functions using function notation?

#### Do Now: Let's Review!



- 1) A relation is set of ordered pairs. Not every relation is a function.
- 2) A function is a relation in which each x-value is assigned to exactly one y-value.
- 3) The domain of a function is the x-values and the range of the function are the y-values.

Determine if the relations displayed by the tables below are functions. Be ready to justify your response.

| х   | у |
|-----|---|
| -3  | 9 |
| 0   | 0 |
| 1 . | 1 |
| 3   | 9 |

| х | у |
|---|---|
| 1 | 5 |
| 2 | 5 |
| 3 | 5 |
| 4 | 5 |

| x   | у |  |
|-----|---|--|
| 3   | 4 |  |
| 2 . | 1 |  |
| 3   | 0 |  |
| 5   | 8 |  |

Yes every input has only one output Yes every input has only one output an input has two different outputs

## **Representing Functions Using Function Notation**

Function Notation, y = f(x), is a way to write a rule that relates the domain and range of an equation.

For example: y = 2x + 3 written in function notation is

f(x) = 2x + 3

| Input<br>x | Function Rule<br>f(x) = 2x + 3 | Output<br>f(x) | Ordered Pairs<br>(x, f(x)) |
|------------|--------------------------------|----------------|----------------------------|
| -2         | f(-2) = 2(-2)+3                | 1              | (-2,-1)                    |
| 4          | f(4) = 2(4)+3                  | 11             | (4,11)                     |
| 7          | f(7) = 2(7)+3                  | 17             | (7,17)                     |

## What is the purpose of function notation?

- 1) Explain the rule- Given function f defined by the rule f(x) = 2x + 3
- 2) Specify an output, f(x), for a given input x
- 3) Remember that y is the same as  $f(x) \rightarrow [y = f(x)]$ .



# **Evaluating Functions written in Function Notation**

For each of the polynomial functions, find the outputs for the given inputs.

1) 
$$a(x) = \frac{x-6}{2}$$

2) 
$$g(x) = \sqrt{2x+1}$$

$$a(2) = \frac{2-6}{2}$$

$$a(2) = -2$$

$$g(4) = \sqrt{2.4 + 1}$$
$$= \sqrt{9}$$

$$a(3) = \frac{3-6}{2}$$

$$a(3) = -\frac{3}{2}$$

$$(3, -\frac{3}{2})$$

$$g(0) = \sqrt{2.0 + 1}$$
$$= \sqrt{1}$$

- 3) Given the function  $f(x) = \frac{x}{3} + 7$ ,
- a) Find f(-9)

$$f(-9) = -\frac{9}{3} + 7$$

$$= -3 + 7$$

$$= 4$$

$$(-9,4)$$

b) Find x if 
$$f(x) = 13$$

$$\frac{f(x)}{=} = \frac{x}{3} + 7$$

$$13 = \frac{x}{3} + 7$$

$$3.6 = \frac{x}{3}.3$$

$$18 = X$$



It is important to remember that when using function notation, y "is the same as" f(x)

#### IT'S YOUR TURN NOW

1. Given the function f defined by f(x) = 2x + 1, find the following:

(a) 
$$f(4) = 2(4) + 1$$
 (b)  $f(-5) = 2(-5) + 1$   
 $f(4) = 9$  = -9

Using the same function, find the value of x when f(x) = 10. f(x)

$$f(x) = 2x+1$$
  
 $10 = 2x+1$   
 $9 = 2x$   
 $4.5 = x$  (4.5,10)

2. Evaluate the function  $p(x) = x^2 - 3$  when x = -2.

$$p(-2) = (-2)^2 - 3$$
  
= 4-3  
= 1 (-2,1)

3. Find the value of x when h(x) = -25 in the function h(x) = -7x + 10.

$$\begin{array}{rcl}
 & = & & & \\
 & -25 = -7x + 10 \\
 & -10 & & -10
\end{array}$$

$$\begin{array}{rcl}
 & -35 = -7x \\
 & +5 = x
\end{array}$$