Essential Question: What relationships can we discover between parallel and perpendicular lines?

<u>Do Now:</u> Graph each linear function below using the slope-intercept method. Check your work with your graphing calculator.

A)
$$\frac{3y = 6x + 15}{3}$$

 $y = 2x + 5$

$$(m)$$
slope: $2\uparrow$

B)
$$-3x - 2y = 8$$

$$-\frac{2y}{-2} = \frac{3x + 8}{-2}$$

$$y = -\frac{3}{2}x - 4$$

(b)
$$_{y-intercept:}$$
 (0, -4)

$$(m)$$
 slope: $\frac{-3}{2}$

Investigating the Slope and Y-intercept of Linear Relationships

Turn and Talk

On the same set of axes, graph the following 3 lines. Analyze the lines and complete a - c.

$$y = 2x + 4$$

Think about this...

a) Compare and contrast the lines. What's the same? What's different?

> The lines have the same slope. They have different y-intercepts.

b) Can a conclusion be made about the relationship of the lines and their slopes?

> The lines are parallel. Parallel lines have the same slope.

c) What does the y-intercept of each line determine?

> The y-intercept is where the line crosses the y-axis.

Graph $y = -\frac{1}{2}x$ on the coordinate plane above. $M = -\frac{1}{2}$ b = 0

- Does this line intersect the other lines above? In what way? Yes, the line intersects the other lines. It is perpendicular (forms 90° angles) to the What is the relationship between the slopes of the 3 lines above and the slope of $y = -\frac{1}{2}x$? Other line

slope of 2 The slopes of perpendicular slope of -1 lines are opposite reciprocals.

Parallel lines have Same slope and different Perpendicular lines have <u>Slopes</u> that are opposite reciprocals.