Essential Question: How can we identify the equations of horizontal lines?

Do Now: Pictured below is the graph of a horizontal line.

a) Name three points on the line.

$$(-3,4)(0,4)(5,4)$$

b) What do these three points have in common?

Graphing Horizontal Lines

Example 1:

Consider: 0x + y = 2

Equation: y = 2

The equation of a horizontal line is y = b, where **b** is any real number.

The y-value for the points that make up this equation is always b regardless of the *x*-value.

Graph
$$y = 2$$

Х	у		
-3	2		
0	2		
4	2		

Domain: $(-\infty, \infty)$ X is all real numbers

Range: $\begin{bmatrix} 2 \end{bmatrix}$

Example 2: On the graph below, graph the linear equations y = 4 and y = -3.

For each of the following, write the equation of the lines shown.

Let's review what we have learned up until this point.

Determine if each relation is a function. Justify your response by <u>explaining</u> your reasoning.

Input	Output
6	-9
7	-9
8	-9

different outputs.

Function because every input has only one output

not a function two inputs have two different outputs

function because it passes the vertical line test

- 5. Let x represent the number of each month (For example x = 1 for January). Let y represent the number of days in month x. Do not consider a leap year.
 - a. Complete the table.

January	February

Input, x	1	2	3	4	5	6	7	8	9	10	П	12
Output, y	31	28	31	30	31	30	31	31	30	31	30	31

b. Does the relation represent a function? Explain.

The relation represents a function because each input has only one output.

c. If you switch the inputs and outputs of this relation, is the resulting relation a function? Explain.

The resulting relation would not be a function because some inputs - 30 and 31 - would have different outputs

- 6. Graph the following linear functions by creating a table of values. *Check all graphs with your calculator*.
- a. y = -2.5x 1

X	y
-4	9
-2	4
0	-1
2	-6
4	-11
6	-16
8	-21
10	-26

you don't

you don't

graph

graph

every point

from your

from your

table to see

order near

the pattern

113	-5x +	Г.,	- 25
n	- 7X +	ער	= /7
~.		-,	

X	y	
-3	2	
-2	3	
-1	4	
0	5	
1	6	
2	7	
3	8	
4	9	

$$\frac{5y=5x+25}{5}$$

$$y = x + 5$$

