Essential Question: How do we simplify polynomial expressions with multiple operations?

Do Now: Consider the two expressions below. Do you see any commonality? Think about this: How would you simplify expression A? How would you simplify expression B?
a) $(4)(5)+(7)(10)$
b) $(x+1)(x-1)+(2 x-5)(x+6)$
$\left(x^{2}+1 x-1 x-1\right)+\left(2 x^{2}+12 x-5 x-30\right)$
$20+70$
90

$$
\begin{array}{cc}
x^{2}-1+2 x^{2}+7 x-30 & \text { then add } \\
3 x^{2}+7 x-31 & \text { results }
\end{array}
$$

Simplifying Polynomial Expressions

$$
\begin{aligned}
& \text { 1) } 3 x(5-4 x)+6(3-2 x) \\
& \begin{array}{l}
\text { (15x-12 } \left.x^{2}\right)+(18-12 x) \\
15 x-12 x^{2}+18-12 x \\
-12 x^{2}+3 x+18
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { 2) } 3\left(y^{3}+8 y\right)-2\left(y^{3}+5\right) \\
\left(3 y^{3}+24 y\right)-\left(2 y^{3}+10\right) \\
3 y^{3}+24 y-2 y^{3}-10 \\
y^{3}+24 y-10
\end{gathered}
$$

P
E Morn \mathbf{D}
A or S

$$
\begin{aligned}
& \text { 3) }(x-4)(x+4)+(x+6)(2 x+5) \\
& \text { 4) }-\frac{3}{2}\left(8 a+2 a^{2}\right)\left(a^{2}-a-9\right) \\
& \left(x^{2}+4 x-4 x-16\right)+\left(2 x^{2}+5 x+12 x+30\right) \\
& \left(-12 a-3 a^{2}\right)\left(a^{2}-a-9\right) \\
& x^{2}-16+2 x^{2}+17 x+30 \\
& 3 x^{2}+17 x+14 \\
& -3 a^{4}-9 a^{3}+39 a^{2}+108 a
\end{aligned}
$$

$$
\begin{gathered}
\text { 5) }\left(x^{2}+5 x-10\right)-(x+2)^{2} \\
\left(x^{2}+5 x-10\right)-(x+2)(x+2) \\
\left(x^{2}+5 x-10\right)-\left(x^{2}+2 x+2 x+4\right) \\
x^{2}+5 x-10-\left(x^{2}+4 x+4\right) \\
x^{2}+5 x-10-x^{2}-4 x-4 \\
x-14
\end{gathered}
$$

6) Find the result when the sum of $x^{2}-2 x+7$ and $6 x-9$ is multiplied by $\frac{1}{2} x^{3}$.

$$
\begin{aligned}
& \frac{1}{2} x^{3}\left(x^{2}-2 x+7+6 x-9\right) \\
& \frac{1}{2} x^{3}\left(x^{2}+4 x-2\right) \\
& \frac{1}{2} x^{5}+2 x^{4}-x^{3}
\end{aligned}
$$

Turn and Talk

1) Subtract $(3 x-1)^{2}$ from $12 x$. Represent your final answer as a simplified polynomial expression written in standard form

$$
\begin{aligned}
& 12 x-(3 x-1)^{2} \\
& 12 x-[(3 x-1)(3 x-1)] \\
& 12 x-\left(9 x^{2}-3 x-3 x+1\right) \\
& 12 x-\left(9 x^{2}-6 x+1\right) \\
& 12 x-9 x^{2}+6 x-1 \\
& -9 x^{2}+18 x-1
\end{aligned}
$$

2) The volume of a rectangular pyramid is one-third the product of the area of its base and height Represent the volume of a rectangular pyramid as a polynomial expression in simplest standard form whose base has an area of $\mathbf{3} x^{2}+12 x+9$ square feet and whose height is $x+\mathbf{3}$ feet.
Use appropriate units in your final answer.

	x^{2}	$4 x$	+3
x	x^{3}	$4 x^{2}$	$3 x$
+3	$3 x^{2}$	$12 x$	9

$$
\begin{aligned}
& V=\frac{1}{3} B h \leftarrow \text { height } \\
& V=\frac{1}{3}\left(3 x^{2}+12 x+9\right)(x+3) \\
& V=\left(x^{2}+4 x+3\right)(x+3) \\
& V=x^{3}+3 x^{2}+4 x^{2}+12 x+3 x+9 \\
& V=x^{3}+7 x^{2}+15 x+9 \quad \text { feet }^{3}
\end{aligned}
$$

3) Celina says that each of the following expressions below is actually a binomial in disguise. Do you (1) ${ }^{\text {agree or disagree? Justify your response. } \leftarrow \text { (you must have two responses.) }}$
a) $5 a b c-2 a^{2}+6 a b c$

$$
11 a b c-2 a^{2}
$$

b) $5(a-1)-10(a-1)+100(a-1)$

$$
\begin{aligned}
& \text { I agree } \\
& \text { yes, } \\
& \text {,hest these }
\end{aligned}
$$

$$
5 a-5-10 a+10+100 a-100
$$

$$
95 a-95
$$

c) $\left(2 \pi r-\pi r^{2}\right)(r)+\left(2 \pi r-\pi r^{2}\right)(r)$

$$
\begin{gathered}
2 \pi r^{2}-\pi r^{3}+2 \pi r^{2}-\pi r^{3} \\
4 \pi r^{2}-2 \pi r^{3}
\end{gathered}
$$

