_				
Q			br	 ~~
o	7	ue	Dr	
-		_		

Essential Question: How can we use our graphing calculator to determine the linear regression equation for a set of bivariate data?

Do Now: Refer to last night's HW.

Write the equation of your trend line here: y = 12x - 4

Using the Graphing Calculator to find the Linear Regression Equation

*One-time process (or after the calculator has been reset)

- 2nd 0 (CATALOG)
- · Scroll down to DIAGNOSTICS ON · Acrow Up
- ENTER, ENTER

· Stat Diagnostics

- STAT #1 (EDIT)
- 2. List distance into L₁ and time into L₂

II. Creating the Scatter Plot

- 3. 2nd y = (STAT PLOT) #1 ENTER
- 4. Turn On and Choose Scatter Plot
- ZOOM #9 (ZOOM STAT)

III. Determining the Linear Regression Equation

6. STAT arrow over to CALC #4 (LinReg (ax + b))

Fill in the following information from your calculator. LinReg(ax + b)

a=11.42241379 slope

b=-3.77586 y-intercept

r=.97319192 correlation coefficient How do we graph the trend line on the calculator?

- 1) Press y =
- 2) Enter equation in y₁
- 3) Press Graph

Linear Regression Equation: $y = 11.422 \times -3.776$

Discussion Question: How is this information from our calculator useful?

The equation can help us predict information (interpolate and extrapolate).

Examine the data in the table below and complete a - d.

The table below shows the duration of several eruptions of the geyser Old Faithful and the interval between eruptions.

X	Duration (minutes)	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
у	Interval (minutes)	50	57	65	.71	76	82	89	95

(a) Use your graphing calculator to create a scatter plot for the data. Sketch the graph below.

Describe the correlation.

(b) Use your graphing calculator to calculate the equation for the line of best fit.

a: 12.64285
b: 32.03571
$$y = 12.643x + 32.036$$

(c) What is the correlation coefficient? What does it say about the data?

(d) If the geyser erupted for 7 minutes, predict the amount of time that would pass before the next eruption occurred.

$$(x, y)$$
 $y = 12.643(7) + 32.036$
duration interval $y = 120.537...$

2120 = minutes (2 hours and

Which equation best models the data in the scatter plot?

(A)
$$y = 15$$

(B)
$$y = -\frac{1}{2}x + 26$$

©
$$y = -\frac{2}{5}x + 19$$
 D $y = -\frac{4}{5}x + 33$

30 seconds

Our <u>Calculator</u> can help us summarize a set of data by determining the <u>equation</u> of the trend line (linear regression model).

We can use this equation to make predictions (interpolate and extrapolate).