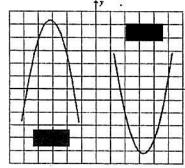
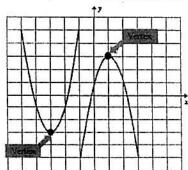

Essential Question: What does the graph of a quadratic function look like?

Do Now: Graph the following quadratic function using the domain $-3 \le x \le 3$ and answer the questions that follow.

$$y = x^2$$

x	у
-3	9
-2	4
-1	i
0	0
1	1
2	4
3	9

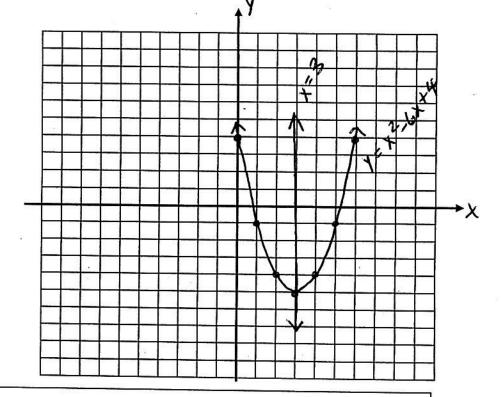



- 1) Is the function linear? No, it is a quadratic.
- 2) Is the function increasing or decreasing? Both!
- 3) Does the function have a constant rate of change? No. You would look for an average rate of change.

Quadratic Functions

- The standard form of a quadratic function is $y = ax^2 + bx + c$
- The graph of a quadratic function is a parabola
- The parabola can open UP or down
- It opens up when the a value is _____ positive ____ and opens down when the a value is _____ require ___.
- The turning point of a parabola is known as the <u>vertex</u>.
 When parabolas open up, the vertex is the minimum point.
 When parabolas open down, the vertex is the maximum point.
- The x-value of the turning point (x, y) can be calculated using the formula:

$$X = -\frac{b}{2a}$$


Graphing Quadratic Functions

- Make sure your equation is written in standard form $(y = ax^2 + bx + c)$.
- Find the x-coordinate of the vertex (turning point) using the formula, $x = \frac{-b}{2a}$.
- > Create a table of values using three x-values less than the x-value of the vertex, and three x-values greater than the vertex.
- > Graph the points from the table of values and connect them with a smooth curve.
- > Label the parabola with the equation.
- 1) Graph the quadratic function $y = x^2 6x + 4$
 - Find the coordinates of the vertex.

$$x = -\frac{b}{2a}$$
 $x = \frac{b}{2(1)}$ $y = 3^2 - 6(3) + 4$
 $y = 9 - 18 + 4$ (3,-5)
 $x = 3$ $y = -5$

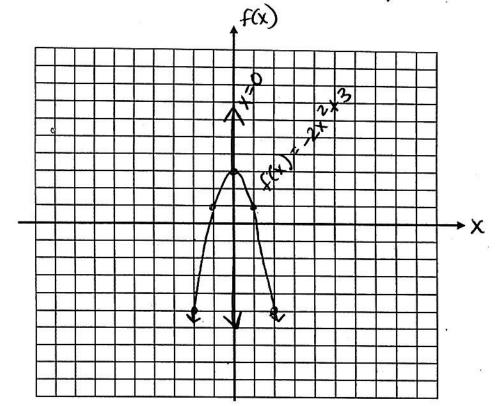
Create a table of values.

*	<u>X</u> .	У
vertex [(middle value in table)	0	4
	1	-1
	2	-4
	3	-5
	4	-4
	5	-1
	Ь	4

IMPORTANT NOTE

Every parabola is **symmetrical**. If a *vertical line* were drawn through the vertex, it would divide the parabola into <u>two equal halves</u>.

This vertical line is known as the axis of symmetry.


Graph the axis of symmetry in the above example and state the equation of the line.

- 2) Graph the function $f(x) = -2x^2 + 3$
 - Find the coordinates of the vertex.

$$x = -\frac{b}{2a}$$
 $x = \frac{0}{2(-2)}$ $x = 0$ $f(x) = -2(0)^2 + 3$ $f(x) = 3$ (0,3)

· Create a table of values.

	X	f(x)
vertex [-3	-15
	-2	-5
	-1	1
	0	3
	İ	ı
	2	-5
	3	-15

Graph the axis of symmetry and state the equation of the line.

- The value of ____ in y = ax² + bx + c causes the quadratic to open upward or downward.
- A positive value of ___ tells us that the graph will open ___ vp ___.
- A negative value of <u>a</u> tells us that the graph will open <u>down</u>.
- The turning point of a parabola is known as the ______ Vertex
- This vertex is either the <u>maximum</u> point or <u>minimum</u> point of the graph depending on whether the parabola opens up or down.
- The x-coordinate of the vertex can be found using the formula $X = \frac{3}{24}$
- The <u>axis of symmetry</u> is a vertical line that divides the parabola into two equal halves.