Essential Questions: How do we determine the domain and range of a quadratic function? How do we determine when the function is increasing? How do we determine when the function is decreasing?

Do Now: Complete the table with the correct terminology.

Domain	input	x-values
Range	output	y-values

Domain and Range of Quadratic Functions

Substituting any real value of x into a quadratic equation results in a real number. Therefore, in general, the <u>domain</u> of any quadratic function is <u>all</u> real numbers. The <u>range</u> of a quadratic function depends on its <u>vertex</u> and the <u>direction</u> that the parabola opens.

1) Graph the quadratic function $y = -x^2 + 4x - 6$ State the:

$$\begin{array}{c}
x = -b \\
2a
\end{array}$$

- Maximum or minimum MAXIMUM

$$X = \frac{-4}{2(-i)}$$

x-intercepts: no real roots

$$x = 2$$

Zeros (roots): _ none

• Domain:
$$(-\infty, \infty)$$

$$y = -x^{2} + 4x - 6$$

$$y = -(2)^{2} + 4(2) - 6$$

• Range:
$$(-\infty, -2.]$$

Given a quadratic function in the form of $f(x) = ax^2 + bx + c$

a > 0	a < 0
Opens up	Opens down
 Vertex is a minimum point 	 Vertex is a maximum point
 ends approach ∞ 	 ends approach -∞

X

- The function is decreasing for all values in which x < 2
- The function is increasing for all values in which x > 2
- The ends of the graph approach + •

- The function is increasing for all values in which x < 1
- The function is decreasing for all values in which x > 1
- The ends of the graph approach -∞

where the arrows point

$$\times < -2$$
 Increasing: $(-\infty, -2)$

x values, do Increasing:
$$(-3,\infty)$$
 $\chi > -3$ not include vertex Decreasing: $(-\infty, -3)$ $\chi < -3$

$$3,\infty)$$
 $\chi > -3$

$$\times > -2$$
 Decreasing: $(-2, \infty)$

$$(-\infty, -3)$$
 $\times < -3$

Range:
$$(-\infty, 4]$$
 y values Range: $(-\infty, 4]$ y $y \ge -2$

Range:
$$(z-2, \infty)$$

 $y \ge -2$

3) Consider the quadratic function
$$f(x) = x^2 + 4x - 1$$

(b) State the range of the function.

(c) State the interval over which
$$f(x)$$
 is increasing.

$$X > -2$$
 or $(-2, \infty)$