Essential Question: How can we determine the rate of change of an exponential function?

Do Now: Consider the exponential function: $f(x) = 8(2)^x$

or in calculator
$$y = 8(2)^{x}$$

$$f(3) = 8(2)^3$$

f(3) = 64

b) Find the value of x if
$$f(x) = 1024$$
.

$$128 = 2^{X}$$
 $2^{7} = 2^{X}$

Let's take a closer look at exponential functions.

Make a table of values and graph the following exponential function over the given interval

1. Graph
$$f(x) = (2.5)^x$$
 over the interval $0 \le x \le 3$

×	f(x)
0	$(2.5)^{\circ} = 1$
1	2.5
2	6.25
3	15.625

What is the average rate of change of this function over the given intervel?

Interval begins at: (
$$\ddot{O}$$
 , \ddot{I}) Average Rate of Change: $\frac{\Delta y}{\Delta x}$ $\frac{15.625-1}{3-0}$

Interval ends at: (3, 15, 625)

All linear functions have a constant rate of change.

- 2. Consider the exponential function $f(x) = 10(2)^x$.
 - a) Find the value of f(0). What is the significance of this value?

$$f(0) = 10(2)^0$$

= 10(1) = 10

That is the y-intercept of the function.

b) Is this an increasing or decreasing exponential function? How do you know?

increasing

the base is greater than I

2>1

c) Using your calculator, sketch a graph of this function on the axes shown below. Use the window indicated. Mark the y-intercept.

y max

x max 3

2 40

d) What is the function's average rate of change over the interval $-1 \le x \le 2$?

 $f(-1) = 10(2)^{-1}$ $f(2) = 10(2)^{2}$ = $10(\frac{1}{2})$ = 10(4)

(1,5)

(2,40)

 $\frac{\Delta y}{\Delta x} = \frac{40-5}{2-(-1)}$

e) Is this rate of change greater than or less than that of the linear function g(x) = 10x + 7? Explain.

This rate of change is greater than the R.O.C. of the linear function constant rate of change is the slope

11.6 > 10

Exponential functions are curved lines that either increase or decrease rapidly. We can rate of change ____ of a specific part of

an exponential function by using the two points that mark the beginning and end of the interval. Use these two points and $\frac{\Delta y}{\Delta x}$ to calculate the average rate of change.