Essential Question: How can we write arithmetic and geometric sequences recursively?

Do Now:

Determine if the sequence below is arithmetic or geometric. For each sequence write an explicit rule that can be used to find the nth term of the sequence.

a) 4,7,10,13,...

$$a_1 = 4$$

 $d = 3$
b) 1,3,9,27,...
 $a_1 = 1$
 $a_1 = 1$
 $a_1 = 1$
 $a_2 = 3$
 $a_3 = 1$
 $a_4 = 1$

Arithmetic and Geometric Sequences can be defined Recursively and Explicitly

Let's take a closer look at the sequences from the Do Now.

Can the sequence 4, 7, 10, 13, ... be defined with a recursive rule?

Can the sequence 1, 3, 9, 27, ... be defined with a recursive rule?

Writing Rules to Generate Arithmetic and Geometric Sequences

Arithmetic	Geometric
Explicit Rule: $a_n = a_1 + d(n-1)$	Explicit Rule: $a_n = a_1 \cdot r^{n-1}$
a ₁ represents the first term in the sequence d represents the common difference	a ₁ represents the first term in the sequence r represents the common ratio
This formula is used to find the nth term of the sequence.	This formula is used to find the nth term of the sequence.
Recursive Rule: $a_n = a_{n-1} + d$; $a_1 = a_{n-1}$ represents the previous term in the sequence d represents the common difference	Recursive Rule: $a_n = a_{n-1} \cdot r$; $a_1 = a_{n-1}$ represents the previous term in the sequence r represents the common ratio
This formula uses the previous term to find the next term in the sequence.	This formula uses the previous term to find the next term in the sequence.

use previous term and 1st term is separate

Write a recursive formula for the following sequences.

2) 200, 40, 8, ...

$$a_n = \frac{a_{n-1}}{5}$$
; $a_1 = 200$

Find the first 3 terms in each sequence below.

3)
$$a_n = a_{n-1} - 0.25$$
 and $a_1 = 3.5$

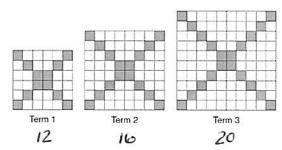
$$a_2 = a_1 - .25 = 3.5 - .25 = 3.25$$

4)
$$a_n = a_{n-1} \cdot 4$$
 and $a_1 = \frac{1}{8}$

$$a_2 = a_1 \cdot 4 = \frac{1}{8} \cdot 4 = \frac{1}{2}$$

$$a_3 = a_2 \cdot 4 = \frac{1}{2} \cdot 4 = 2$$

The figure below represents the first three terms of a sequence.



(shaded boxes)

pattern: +4 first term: 12

explicit: an = 12+4(n-1)

Which of the following rules can be used to define the sequence? Select all that apply. Justify your response.

D)
$$a_n = 12 + 4(n-1)$$
 $explicit rule$

A.)
$$a_n = a_{n-1} + 4$$
; $a_1 = 12$

B) $a_n = 4n + 8$

Simplified version

 $a_n = 12 + 4(n-1)$
 $= 12 + 4n - 4$

(c)
$$a_{n+1} = a_n + 4$$
; $a_1 = 12$

previous term

(one less than n)

F.
$$a_n = 4 + 12(n - 1)$$

not not
first pattern
term

Sequences defined recursively use the Previous term(s) to find the next term of the sequence.

(first term and pattern)

Sequences defined **explicitly** use the explicit formula to find the *n*th term.