Essential Question: How can we write arithmetic and geometric sequences recursively?
Do Now:
Determine if the sequence below is arithmetic or geometric. For each sequence write an explicit rule that can be used to find the nth term of the sequence.
a) $4,7,10,13, \ldots$
b) $1,3,9,27$, ...
$a_{1}=4$
$a_{n}=4+3(n-1)$
$\begin{array}{ll}a_{1}=1 \\ r=3 & a_{n}=1(3)^{n-1}\end{array}$

Arithmetic and Geometric Sequences can be defined Recursively and Explicitly

Let's take a closer look at the sequences from the Do Now.
Can the sequence $4,7,10,13, \ldots$ be defined with a recursive rule?

$$
a_{n}=a_{n-1}+3 ; \quad a_{1}=4
$$

Can the sequence $1,3,9,27, \ldots$ be defined with a recursive rule?

$$
a_{n}=a_{n-1} \cdot 3 ; \quad a_{1}=1
$$

Writing Rules to Generate Arithmetic and Geometric Sequences

Arithmetic	Geometric
Explicit Rule: $a_{n}=a_{1}+d(n-1)$ a_{1} represents the first term in the sequence d represents the common difference This formula is used to find the nth term of the sequence.	Explicit Rule: $a_{n}=a_{1} \bullet r^{n-1}$ a_{1} represents the first term in the sequence r represents the common ratio This formula is used to find the nth term of the sequence.
Recursive Rule: $a_{n}=a_{n-1}+d$; $a_{1}=$ $\mathrm{a}_{\mathrm{n}-1}$ represents the previous term in the sequence d represents the common difference This formula uses the previous term to find the next term in the sequence.	Recursive Rule: $a_{n}=a_{n-1} \bullet r ; a_{1}=$ a_{n-1} represents the previous term in the sequence r represents the common ratio This formula uses the previous term to find the next term in the sequence.

use previousterm and 1 st term is separate

Write a recursive formula for the following sequences.

1) $100,96,92, \ldots$
2) $200,40,8, \ldots$
$a_{n}=a_{n-1}-4 ; \quad a_{1}=100$

$$
a_{n}=\frac{a_{n-1}}{5} ; a_{1}=200
$$

Find the first 3 terms in each sequence below.
3) $a_{n}=a_{n-1}-0.25$ and $a_{1}=3.5$
4) $a_{n}=a_{n-1} \bullet 4$ and $a_{1}=\frac{1}{8}$
$a_{1}=3.5$
$a_{2}=a_{1}-.25=3.5-.25=3.25$
$a_{1}=\frac{1}{8}$
$a_{2}=a_{1} \cdot 4=\frac{1}{8} \cdot 4=\frac{1}{2}$
$a_{3}=a_{2}-.25=3.25-.25=3$
$a_{3}=a_{2} \cdot 4=\frac{1}{2} \cdot 4=2$
5) The figure below represents the first three terms of a sequence.

Which of the following rules can be used to define the sequence? Select all that apply. Justify your response.
A. $a_{n}=a_{n-1}+4 ; a_{1}=12$
(B) $a_{n}=4 n+8$
simplified version
C. $a_{n+1}=\frac{a_{n}}{T}+4 ; a_{1}=12$ $a_{n}=12+4(n-1)$
$=12+4 n-4$
greviousterm
pattern +4 1stterm
E. $a_{n}=a_{n-1}+12 ; a_{1}=4$
F. $a_{n}=4+12(n-1)$
explicit rule

TAKEAWAY

Sequences defined recursively use the \qquad terms) to find the next term of the sequence.
(first term and pattern)
Sequences defined explicitly use the explicit formula to find the nth term.

