Essential Questions: What is a recursive rule? How do we use recursive formulas to find the terms in a sequence?

Do Now: Create a sequence of numbers using the following information below.
Write the sequence here: \qquad 157

1) The first number of the sequence is 2 .
2) To find the second number of the sequence, take the first number, multiply it by 5 then subtract 3 .
3) To find the third number of the sequence, take the second number, multiply it by 5 then subtract 3.
4) To find the fourth number of the sequence, take the third number, multiply it by 5 then subtract 3 .

Let's take a closer look at the sequence from the Do Now.

$$
2,7,32,157
$$

1) Is the sequence arithmetic? No, there is not a constant difference
2) Is the sequence geometric? No, there is not a constant ratio
3) Does the sequence follow a pattern? Yes, multiply by 5 , then The sequence from the Do Now can be defined recursively. subtract 3
\qquad .

Using a Recursive Rule to Generate a Sequence

A recursive rule for a sequence defines the nth term by relating it to one or more previous terms.

A recursive formula will help you find the next term in a sequence. Each term is found by doing something ($+,-, x, \div$) to the previous term (s).

A recursive formula is written with two parts:

- a statement of the starting term
- a statement of the formula used to arrive at the next term

Let's define the sequence from the Do Now recursively.
The first term is $2 . \quad$ The nth term equals 5 times the previous term minus 3.

$$
\underline{a_{1}}=2 \quad \underline{a_{n}}=5 \underline{a}_{n-1}-3
$$

Find the first four terms of each sequence given the recursive rule.

1) $a_{1}=6 ; a_{n}=2 a_{n-1}+1$

n		a_{n}
1	a_{1}	6
2	a_{2} $=2 a_{1}+1$ $=2(6)+1$	13
3	a_{3} $=2 a_{2}+1$ $=2(13)+1$	27
4	a_{4} $=2 a_{3}+1$ $=2(27)+1$	55

3) $f(1)=\frac{1}{2}: f(n)=-4 f(n-1)+6$

n		$f(n)$
1	$f(1)=\frac{1}{2}$	$\frac{1}{2}$
2	$f(2)$	$=-4 f(1)+6$
	$=-4\left(\frac{1}{2}\right)+6$	4
3	$=-4(4)+6$	-10
$f(3)$	$=-4 f(2)+6$	
$f(4)$	$=-4 f(3)+6$	
	$=-4(-10)+6$	46

2) $a_{1}=-12 ; a_{n}=\frac{1}{2} a_{n-1}-4$

n		a_{n}
1	$a_{1}=-12$	-12
2	a_{2} $=\frac{1}{2} a_{1}-4$ $=\frac{1}{2}(-12)-4$	-10
3		
4	a_{3} $=\frac{1}{2} a_{2}-4$ $=\frac{1}{2}(-10)-4$	-9
a_{4}	$=\frac{1}{2} a_{3}-4$	
	$=\frac{1}{2}(-9)-4$	-8.5

- Sequences defined recursively use the previous term to find the next term of the sequence.
- The symbols a_{n-1} and $f(n-1)$ represent the previous term in the sequence.

More Recursive Rules

4) If a sequence is defined recursively by $f(1)=10$ and $f(n)=-f(n-1)+3$ then find $f(5)$.
$f(1)=10$

$f(2)=-f(1)+3=-10+3=-7$
$f(3)=-f(2)+3=-(-7)+3=10$
$f(4)=-f(3)+3=-(10)+3=-7$
$f(5)=-f(4)+3=-(-7)+3=10$
5) A sequence is defined recursively by adding 4 to twice the value of the previous term. Write a recursive rule for this sequence if the first term is 15 .

$$
a_{n}=2 a_{n-1}+4, \quad a_{1}=15
$$

TAKEAWAY

When creating a sequence using a recursive rule, it is important to understand that each term of the sequence is found using the previous term. If the nth term of the sequence is denoted by a_{n} then the previous term is \qquad a_{n-1} -.

PIPS CORNER

One of the most famous sequences in mathematics is The Fibonacci Sequence. It is defined recursively as follows: $a_{n}=a_{n-1}+a_{n-2} ; a_{0}=1$ and $a_{1}=1$. Using this rule, find the first five terms of the sequence.

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=1 \\
& a_{2}=a_{1}+a_{0}=1+1=2 \\
& a_{3}=a_{2}+a_{1}=2+1=3 \\
& a_{4}=a_{3}+a_{2}=3+2=5
\end{aligned} \quad a_{5}=a_{4}+a_{3}=3+5=8
$$

