Essential Question: How can we distinguish between arithmetic and geometric sequences?
Do Now:
i) Identify each sequence as arithmetic, geometric or neither.
ii) If arithmetic, identify the common difference. If geometric, identify the common ratio.
A. $12,18,27,40.5, \ldots$ \qquad geometric \qquad
B. $-123,-137,-151,-165, \ldots$
arithmetic

$$
d=-14
$$

C. $3,7,15,31, \ldots$
neither \qquad
D. $1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \ldots$ \qquad

$$
r=\frac{1}{4}
$$

STOP HERE

1. For letters A. and B. above, write an equation that can be used to find the nth term of the sequence.

$$
a_{1}=12
$$

$$
a_{1}=-123
$$

$$
12,18,27,40.5, \ldots \quad r=1.5
$$

$$
-123,-137,-151,-165, \ldots
$$

$$
d=-14
$$

A. \qquad B. $a_{n}=-123-14(n-1)$
2. Using your equation, find the $10^{\text {th }}$ term in each sequence.

$$
\begin{aligned}
a_{10} & =12(1.5)^{10-1} \\
& =12(1.5)^{9} \\
& =461.3203125
\end{aligned}
$$

$$
\begin{aligned}
& a_{10}=-123-14(10-1) \\
& a_{10}=-123-14(9) \\
& a_{10}=-249
\end{aligned}
$$

3. Katie works at the local pet shop. For a single litter of kittens, she puts out 17 ounces of wet food. For 2 litters she puts out 34 ounces of wet food and for 3 litters, she puts out 51 ounces of wet food. She continues this pattern for n litters.
a) Write an equation that can be used to find the number of ounces of wet food an.
litters \downarrow Katie will put out fo n litters of kittens.

n	1	2	3
a_{n}	17	34	51

$$
\begin{array}{ll}
a_{1}=17 & a_{n}=17+17(n-1) \\
d=17 &
\end{array}
$$

ounces of
b) How much wet food will Katie put out if there are 8 litters of kittens in the store? food

$$
\begin{aligned}
& a_{8}=17+17(8-1) \\
& a_{8}=136
\end{aligned}
$$

136 ounces of wet food
4. A soup kitchen makes 16 gallons of soup every two weeks. Each day they serve 25% of the soup that remains from the previous day. The table below shows how much soup $f(n)$. remains after n days.

\# of | days\mathbf{n} 1 2 3
 $\mathbf{f (n)}$ 12 9 6.75 l |
| :--- |

soup in ing rem 2. Write an equation that can be used to find the number of gallons of soup remaining (gallons) afterndays.

$$
\begin{array}{r}
f(1)=12 \\
r=.75
\end{array}
$$

b) How many gallons of soup remain after the $12^{\text {th }}$ day? Round your answer to the
nearest tenth.

$$
n=12
$$

$$
\begin{aligned}
& f(12)=12(.75)^{12-1} \\
& f(12)=12(.75)^{11} \\
& f(12)=.5
\end{aligned}
$$

A half gallon of soup remains after the 12 th day.
c) On what day is there about 2 gallons of soup left?

first, put this in the calculator

$$
y=12(.75)^{x-1}
$$

Then, look at the $\overline{\bar{y}}$ column in the table of values. when is it closest to 2 ? The $7^{\text {th }}$ day
5. Write an explicit rule for an arithmetic sequence if $a_{6}=8$ and $a_{10}=40$.

To find the first term, it is 5 places
away from the $6^{\text {th }}$ term.

To find the first term, it is

$$
\begin{aligned}
& a_{1}=a_{6}-5(8) \\
& a_{1}=8-40 \\
& a_{1}=-32
\end{aligned}
$$

To find the common difference, subtract the numbers and divide by the number of places. Find the R.O.C.

$$
\frac{\Delta y}{\Delta x}=\frac{40-8}{10-6} \rightarrow \frac{32}{4} \rightarrow 8
$$

Find the 20 th term

$$
\begin{aligned}
& a_{n}=-32+8(n-1) \\
& a_{20}=-32+8(20-1) \\
& a_{20}=120
\end{aligned}
$$

6. Write an explicit rule for a geometric sequence if $a_{3}=10$ and $r=\frac{1}{2}$.

a	1	2	3	4
a_{n}	40	20	10	

To find the previous term, divide by the ratio

The explicit rule finds the value
THAKAMATY of any term $\quad a_{n}=40(.5)^{n-1}$

If a sequence of numbers is arithmetic, the pattern will display a common \qquad between consecutive terms. An explicit formula $\mathbf{a}_{n}=$ \qquad $a_{1}+d(n-1)$ can be used to find the \boldsymbol{n} th term of the sequence.
If a sequence of numbers is geometric, the pattern will display a common \qquad ratio between consecutive terms. An explicit formula $\mathbf{a}_{\mathbf{n}}=$ \qquad $a_{1}(r)^{n-1}$ can be used to find the \boldsymbol{n} th term of the sequence.

