Essential Questions: What is a geometric sequence? How do we define geometric sequences explicitly?

Do Now: In the movie "Pay it Forward" the main character, a young boy, determines that he can make a significant difference in the world by creating a chain of events. During the movie he helps three people, who each help three people and so on.

(a) How many people's lives would be affected in the $6^{\text {th }}$ round of this pattern?

$$
1,3,9,27,81,243
$$

(b) Identify the pattern in this sequence of numbers.
(https://www.youtube.com/watch?v=KxB43PxasGA)

What is a Geometric Sequence?

If a sequence of values follows a pattern of multiplying a fixed amount (not zero) to arrive at the next term, it is referred to as a geometric sequence. In a geometric sequence, the ratio of successive terms is called the common ratio (r).

To find the common ratio: Divide any term by the previous term. $8 \div 4$
$>$ The common ratio in this example is \qquad 2 .

To find the next term: Multiply the previous term by the common ratio. 8×2
$>$ The next term in this example is \qquad 16 .

Let's take a look at some sequences...is there a common ratio? If so, find the next term in the sequence.
(1) $1,-2,4,-8, \ldots$
(2) $3,6,10,15, \ldots$
(3) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$
$4 \div-2=-2$
$6 \div 3=2$
$-8 \div 4=-2$
$15: 10=1.5$
$\frac{1}{2} \div 1=\frac{1}{2}$
yes
No

$$
\frac{1}{4} \div \frac{1}{2}=\frac{1}{2}
$$

$$
r=-2
$$

Yes, $r=\frac{1}{2}$

Writing Geometric Sequences as Functions
You can use the first term and the common ratio to write a function rule that describes a geometric sequence. Assume the first term is 4 and the common ratio is 3.

$$
a_{1}=4 \quad r=3
$$

Term\#	Term	Written in terms of	Term
n	a_{n}	a_{1} and r	
1	a_{1}	a_{1}	4
2	a_{2}	$a_{1} \cdot r$	$4 \cdot 3=12$
3	a_{3}	$a_{1} \cdot r \cdot r->a_{1} \cdot r^{2}$	$4(3)^{2}=36$
4	a_{4}	$a_{1} \cdot r \cdot r \cdot r-->a_{1} \cdot r^{3}$	$4(3)^{3}=108$
n	a_{n}	$a_{1} \cdot r^{n-1}$	$4(3)^{n-1}$

The Explicit Formula to find the nth term of a geometric sequence:
Subscript Notation $a_{n}=a_{1} \cdot r^{n-1}$
Function Notation $a(n)=a(1) \cdot r^{n-1}$
(4) Given the following geometric sequence: $1,4,16,64, \ldots$
a) Define the sequence explicitly.
b) Find the 11th term. $n=$ \qquad 11

$$
\begin{aligned}
& a_{1}=1 \\
& a(n)=1 \cdot 4^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
a(n) & =1 \cdot 4^{n-1} \\
a(11) & =1 \cdot 4^{11-1} \\
& =1 \cdot 4^{10} \\
& =1,048,576
\end{aligned}
$$

(5) Given the following geometric sequence: $128,32,8,2,0.5, \ldots$
a) Write an equation to find the nth term.

$$
\begin{aligned}
& a_{1}=128 \quad r=\frac{1}{4} \\
& a_{n}=128 \cdot\left(\frac{1}{4}\right)^{n-1}
\end{aligned}
$$

b) Find the 8 th term. $n=8$

$$
\begin{aligned}
a_{n} & =128 \cdot\left(\frac{1}{4}\right)^{8-1} \\
& =128 \cdot\left(\frac{1}{4}\right)^{7} \\
& =.0078125
\end{aligned}
$$

(6) Given the following geometric sequence:

n	1	2	3	4
a_{n}	$\frac{2}{3}$	-2	6	-18

a) Write an equation to find the nth term.

Find a_{i} and ratio

$$
\begin{aligned}
& a_{1}=\frac{2}{3}-2 \div \frac{2}{3}=-3 \\
&-18 \div 6=-3 \\
& a_{1}=\frac{2}{3} \cdot(-3)^{n-1}
\end{aligned}
$$

b) Find the 7 th term.
$n=7$

$$
\begin{aligned}
a_{7} & =\frac{2}{3} \cdot(-3)^{7-1} \\
& =\frac{2}{3}(-3)^{6} \\
& =\frac{2}{3}(729) \\
& =486
\end{aligned}
$$

$>$ The ratio of successive terms in a geometric sequence is called the common ratio

The explicit formula for a geometric sequence allows you to find the \boldsymbol{n} th term of the sequence by substituting the values of $a_{1} \quad$ (first term) and _r__ (common ratio) in the equation $a_{n}=$ \qquad .

