Essential Question: How do we solve real-world problems using a system of linear inequalities?

Sergio is building a garden. He wants the length of the garden to be at least 30 feet and the perimeter of the garden to be no more than 100 feet.

Write a system of linear inequalities that represents the situation described. Let represent the length of the garden and let prepresent the width.

MODELING WITH SYSTEMS OF INEQUALITIES

There are many situations that arise in business and engineering that necessitate the use of a system of linear inequalities. The region in the coordinate plane that solves the system represents all of the possible solutions to the problem.

Example 1:

Sergio is building a garden. He wants the length of the garden to be at least 30 feet and the perimeter of the garden to be no more than 100 feet. Let x represent the length of the garden and let y represent the width.

(a) Using the system you created in the Do Now, determine all the possible dimensions of the garden by graphing the system.

X ≥ 30

2x + 2y = 100

 $2y \leq -2x_1$ boundary $y \leq -x+50$ boundary $y \leq -x+50$ $x \mid y$ $0 \mid 50$ $x \mid y$ $0 \mid 50$ $x \mid y$ 30 $x \mid y$ $0 \mid 50$ $x \mid y$ 31 31

(b) Is a length of 35 feet and a width of 10 feet a possible combination? How do you know?

lock at point on graph

substitute in both inequalities

Yes, the point (35,10) is in the solution set of the graph.

 $x \ge 30$ $2x + 2y \le 100$ $35 \ge 30$ $2(35) + 2(10) \le 100$

(c) State another set of dimensions possible for the garden.

70+20 = 100 90 = 100

Answers will vary

ex. length of 40 feet, width of 5 feet

Example 2:

Paul works hours a week at a bagel shop that pays 60an hour. He has also accepted a job that pays 610 an hour mowing lawns for hours a week. He will work both jobs. Paul wants to earn at least \$120 a week, but due to school commitments, he must work less than 30 hours a week.

(a) Write a system of inequalities that describes the situation. Graph the system.

x: hours at bagelshop y: hours mowing lawns

$$x + y < 30$$
 $6x + 12y \ge 120$
 $2y \ge -6x + 120$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$
 $30 = 0$

(b) Determine and state one combination of hours that will allow Paul to earn at least \$120 per week while working less than 30 hours.

Answers will vary

$$6x + 12y \ge 120$$

 $6(12) + 12(10) \ge 120$
 $72 + 120 \ge 120$
 $192 \ge 120$

developing a system, use two _	variables	fferent types of problems. When to represent two different
quantities. Write two	inequalities	that describe the situation.
The solution set to the problem	is represented by the ordered pa	airs shown in the region where both
graphs intersect	-	8

The Royal Crown Players of Roskyn High School are raising money for their club by putting on a production of The Music Man. They have 500 seats in the auditorium. They are selling student tickets for \$5 each and non-student tickets for \$10 each. They must sell at least \$2000 worth of tickets to cover their expenses.

(a) Prepresents the number of student tickets sold and prepresents the number of non-student tickets sold, write a system of inequalities that can be used to model this situation. Graph the system.

X: # of student tickets sold y: # of non-student tickets sold X + y \leq 500 5x + 10 y \geq 2000 y \leq -x + 500 10 y \geq -5x + 2000 x | y \geq - $\frac{1}{2}$ x + 200°

(b) List two possible combinations of student and non-student tickets that must be sold to cover the club's expenses.

Answers will vary

(c) Will the club cover their expenses if they sell 150 student tickets and 100 non-student tickets? Justify your response.

must make at least \$2000 $5x + 10y \ge 2000$ $5(150) + 10(100) \ge 2000$ $750 + 1000 \ge 2000$ $1750 \ge 2000$

No, they will not cover their expenses because \$1750 is less than \$2000

3250 22000

Karen likes her job as a babysitter, but it pays only \$5 per hour. She has been offered a job as a tutor that pays \$10 per hour. Because of school work, her parents only allow her to work a maximum of 20 hours per week. How many hours can Karen tutor and babysit if she wants to earn at least \$100 per week?

(a) Write a system of inequalities that can be used to answer the question. Use to represent the number of hours Karen babysits and to represent the number of hours Karen tutors.

X: # of hours of babysitting $x+y \leq 20 \longrightarrow y \leq -x+20$ Y: # of hours of tutoring $5x+10y \geq 100$ $x \mid y = -5x+100$ (b) Graph the system. $x \mid y = -\frac{1}{2}x+10$

Number of Hours spent Babysitting

(c) Determine and state one solution that would allow Karen to work a maximum of 20 hours while making at least \$100 in one week. *Explain* your solution in the context of the situation.

Answers will vary

When Karen babysits for 12 hours

and tutors for 6 hours, she does

not work more than 20 hours and
she makes at least 100 for the week

x+y \le 20

12+6\le 20

18\le 20

120\geq 100