For \#'s 26-27, set up an equation in order to solve the problem. Define all unknowns.
26. At the local chocolatier, Mark is going to purchase a candy jar and fill it with caramels and taffies. He wants to mix one part caramels and two parts taffies. Caramels sell for $\$ 1.50 \mathrm{per} \mathrm{lb}$ and taffies sell for $\$ 1.25$ per lb. If he spent $\$ 10$ on the candy, how many lbs of each type did he purchase?
x: the number of pounds of caramels purchased
$\mathbf{2 x}$: the number of pounds of taffies purchased

$$
\begin{aligned}
1.50 x+1.25(2 x) & =10 \\
1.5 x+2.5 x & =10 \\
4 x & =10 \\
\frac{4 x}{4} & =\frac{10}{4} \\
x & =2.5 \quad 2 x=2(2.5)=5
\end{aligned}
$$

Mark purchased $2 \frac{1}{2}$ lbs of caramels and 5 lbs of taffies.

Check

2.5 lbs of caramels $=\$ 3.75 \quad(2.5 \mathrm{lbs} \times \$ 1.50)$

5 lbs of taffies $=\$ 6.25 \quad(5 \mathrm{lbs} \times \$ 1.25)$
Total: $\$ 10(\$ 3.75+\$ 6.25=\$ 10)$

Table Set Up

Item	Quantity	Value (price per lb)	Total Value (amount of \$ spent)
Ibs of caramel	x	$\$ 1.50$	1.50 x
Ibs of taffies	2 x	$\$ 1.25$	$1.25(2 \mathrm{x})$

27. Using only 32 -cent and 20 -cent stamps, Cheri put $\$ 3.36$ postage on a package. She used double the amount of 32 -cent stamps than 20 -cent stamps. Determine how many stamps she used of each kind.
\mathbf{x} : the number of 20 -cent stamps used for postage (4)
$\mathbf{2 x}$: the number of 32 -cent stamps used for postage (8)
$0.20 x+0.32(2 x)=3.36$
$20 x+32(2 x)=336 \leftarrow$ multiplied both sides by 100
$20 x+64 x=336$
$\underline{84 x}=\underline{336}$
$84 \quad 84$
$x=4$

4 20-cent stamps and 8 32-cent stamps

Check

420 cent stamps = $\$ 0.80$
832 cent stamps = \$2.56
Total: $\$ 3.36(\$ 0.80+\$ 2.56=\$ 3.36)$

Table Set Up			
Item	Quantity	Value (worth of stamp)	Total Value (amount of \$ spent)
20-cent stamps	x	$\$ 0.20$.20 x
32-cent stamps	2 x	$\$ 0.32$	$.32(2 \mathrm{x})$

4) Inequalities

28. Which number is part of the solution set to the inequality $\mathbf{5 x + 3} \mathbf{>} \mathbf{3 8}$?
(1) 5
(3) 6
(2) 7
(4) 8
(4) 8

$$
\begin{array}{cl}
5 x+3>38 & \begin{array}{l}
\text { If you replace } x \text { with } 5,6 \text { or } \\
7, \text { you will see that each }
\end{array} \\
\frac{5 x}{5}>\frac{35}{5} & \begin{array}{l}
\text { value does not make the } \\
\text { inequality statement true } .
\end{array}
\end{array}
$$

29. Which inequality represents the accompanying graph?

(1) $-3 \leq x<4$
(3) $-3 \leq x \leq 4$
(2) $-3<x<4$
(4) $-3<x \leq 4$
(4) $-3<x \leq 4$

The graph shows all numbers less than or equal to 4 (closed circle) and greater than -3 (open circle).
30. An electronics store sells DVD players and cordless telephones. The store makes a $\$ 75$ profit on the sale of each DVD player (d) and a $\$ 30$ profit on the sale of each cordless telephone (c). The store wants to make a profit of at least $\$ 255.00$ from its sales of DVD players and cordless phones. Which inequality describes this situation?
(1) $75 d+30 c<255$
(2) $75 d+30 c \leq 255$
(4) $75 d+30 c \geq 255$
"at least" translates into greater than or equal to
(3) $75 d+30 c>255$
(4) $75 d+30 c \geq 255$
31. a) Write a compound inequality statement that represents the graph pictured below.

b) Represent the solution set in interval notation.

$$
(-\infty,-5] \vee(3, \infty)
$$

32. David has two jobs. He earns $\$ 8$ per hour babysitting his neighbor's children and he earns $\$ 11$ per hour working at the coffee shop.
a) Write an inequality to represent the number of hours, \boldsymbol{b}, babysitting and the number of hours, c, working at the coffee shop that David will need to work in order to earn a minimum of $\$ 200$.
```
8b+11c\geq200
```

b) David worked 15 hours at the coffee shop. Use the inequality to find the number of full hours he must babysit to reach his goal of $\$ 200$.

$$
\begin{aligned}
8 b+11 c & \geq 200 \\
8 b+11(15) & \geq 200 \\
8 b+165 & \geq 200 \\
8 b & \geq 35 \\
\frac{8 b}{8} & \geq \frac{35}{8} \\
b & \geq 4.375
\end{aligned}
$$

$$
\begin{aligned}
& \text { Check } \\
& \begin{aligned}
8(5)+11(15) & \geq 200 \\
\$ 40+\$ 165 & \geq \$ 200 \\
\$ 205 & \geq \$ 200
\end{aligned} \\
& \text { David reaches his goal! }
\end{aligned}
$$

David will need to babysit for 5 hours.
33. Solve the inequality below to determine and state the smallest integer value of \mathbf{x} that will make the statement true.
$27 x-20 \leq 5(7 x-2)$

$$
\begin{aligned}
27 x-20 & \leq 35 x-10 \\
-35 x & -35 x \\
-8 x-20 & \leq-10 \\
+20 & +20 \\
\frac{-8 x}{-8} & \leq \frac{10}{-8} \\
x & \geq-1.25 \text { (reverse the inequality symbol when dividing both sides by a negative number) }
\end{aligned}
$$

The smallest integer value that will make the inequality true is $\mathbf{- 1}$.

Check

$$
\begin{aligned}
27(-1)-20 & \leq 5(7(-1)-2) \\
-27-20 & \leq 5(-7-2) \\
-47 & \leq-45 \text { true statement }
\end{aligned}
$$

Try one value smaller (-2)

$$
\begin{aligned}
27(-2)-20 & \leq 5(7(-2)-2) \\
-54-20 & \leq 5(-14-2) \\
-74 & \leq-80 \text { false statement }
\end{aligned}
$$

