Essential Questions: What are transformations? How do we transform functions?

Transformations

• a mathematical process that changes the size or position of a geometric figure. Transforming a function means to apply a <u>change</u> to a parent function to produce another function with similar characteristics.

<u>**Rigid Transformations</u>** (describes changes in location but not size and shape.)</u>

• TRAN<u>SL</u>ATION: a transformation in which a geometric figure or function <u>sl</u>ides to another position.

• RE<u>FL</u>ECTION: a transformation in which a geometric figure or function is <u>fl</u>ipped over a line of reflection.

Non-Rigid Transformations (describes changes in size but not shape.)

• DILATION: a transformation in which a figure or function is either enlarged/stretched or shrunk/compressed.

<u>**PART I</u>** [Set the WINDOW setting of your calculator to Zstandard (zoom #6)] Graph each parent function, f(x). Use a graphing calculator to graph the two new functions y = f(x) + k for k = -4, and 3 in the same coordinate system.</u>

There. You should have 5 graphs in each window. Sherch a copy of your screen.	Note:	You should	have 3	graphs in	each window.	Sketch a c	opy of your	screen.
---	-------	------------	--------	-----------	--------------	------------	-------------	---------

(a)	f(x) = x		(c) $f(x) = \sqrt{x}$
1)	a(<i>x</i>) = <i>x</i> – 4	Write your prediction of what change you think will happen in part b	1) c(<i>x</i>) = $\sqrt{x} - 4$
2)	b(x) = x + 3	win happen in part b.	2) d(<i>x</i>) = $\sqrt{x} + 3$
		Then graph part b and see if your prediction was correct.	
What	happened when you sul	otracted 4 from outside the	parent function?
What	happened when you ad	ded 3 outside the parent fu	nction?

Function Notation	Type of transformation
f (x) + k	
f (x) - k	

PART II

Graph each parent function, f(x), and use a graphing calculator to graph y = f(x + h) for h = -4, and 3 in the same coordinate system.

Note: You should have 3 graphs in each window. Sketch a copy of your screen.

(a) $f(x) = x $		(b) $f(x) = \sqrt[3]{x}$
1) a(x) = $x - 4$	Write your prediction of what change you think will happen in part b.	1) a(x) = $\sqrt[3]{x-4}$
2) $b(x) = x+3 $		2) b(x) = $\sqrt[3]{x+3}$
	Then graph part b and see if your prediction was correct.	
What happened to the pare	nt function when you subtrac	ted 4 <u>inside the symbol</u> ?
wnat nappenea to the pare	TT TUNCTION WHEN YOU added	3 <u>inside the symdoi</u> ?

Function Notation	Type of transformation
f (x - k)	
f (x + k)	

PART III

Graph each parent function f(x), and use a graphing calculator to graph y = -f(x) in the same coordinate system.

(a)		(c)
1) $f(x) = x^2$ 2) $a(x) = -x^2$	Write your prediction of what change you think will happen in part b.	1) $f(x) = \sqrt[3]{x}$
		2) $d(x) = -\sqrt[3]{x}$
	Then graph part b and see if your prediction was correct.	
Describe the relationship be	tween the graph of $y = f(x)$ a	nd the graph of $y = -f(x)$.

Note:	You should	have 2	graphs in	each window.	Sketch a copy	y of your screen.
-------	------------	--------	-----------	--------------	---------------	-------------------

Function Notation	Type of transformation
-f(x)	

PART IV

Graph each parent function f(x), and use a graphing calculator to graph $y = a \bullet f(x)$ for $a = \frac{1}{4}$, and 2 in the same coordinate system.

Note: You should have 3 graphs in each window. Sketch a copy of your screen.

Function Notation	Type of transformation
a • f(x) , a > 1	
a • f(x) , a < 1	