Essential Questions: What are transformations? How do we transform functions?

Transformations

- a mathematical process that changes the size or position of a geometric figure. Transforming a function means to apply a change to a parent function to produce another function with similar characteristics.

Rigid Transformations (describes changes in location but not size and shape.)

- TRANSLATION: a transformation in which a geometric figure or function slides to another position.

- REFLECTION: a transformation in which a geometric figure or function is flipped over a line of reflection.

Non-Rigid Transformations (describes changes in size but not shape.)

- DILATION: a transformation in which a figure or function is either enlarged/stretched or shrunk/compressed.

PART I [Set the WINDOW setting of your calculator to Zstandard (zoom \#6)]
Graph each parent function, $f(x)$. Use a graphing calculator to graph the two new functions $y=f(x)+k$ for $k=-4$, and 3 in the same coordinate system.

Note: You should have 3 graphs in each window. Sketch a copy of your screen.

What happened when you subtracted 4 from outside the parent function?

What happened when you added 3 outside the parent function?

Function Notation	Type of transformation
$f(x)+k$	
$f(x)-k$	

PART II
Graph each parent function, $f(x)$, and use a graphing calculator to graph $y=f(x+h)$ for $h=-4$, and 3 in the same coordinate system.

Note: You should have 3 graphs in each window. Sketch a copy of your screen.

What happened to the parent function when you subtracted 4 inside the symbol?

What happened to the parent function when you added 3 inside the symbol?

Function Notation	Type of transformation
$f(x-k)$	
$f(x+k)$	

PART III
Graph each parent function $f(x)$, and use a graphing calculator to graph $y=-f(x)$ in the same coordinate system.

Note: You should have 2 graphs in each window. Sketch a copy of your screen.

Function Notation	Type of transformation
$-f(x)$	

PART IV

Graph each parent function $f(x)$, and use a graphing calculator to graph $y=a \bullet f(x)$ for $a=\frac{1}{4}$, and 2 in the same coordinate system.

Note: You should have 3 graphs in each window. Sketch a copy of your screen.

What happened to the parent graph when you multiplied by $\frac{1}{4}$?

What happened to the parent graph when you multiplied by 2 ?

Function Notation	Type of transformation
$a \cdot f(x), a>1$	
$a \cdot f(x), a<1$	

