Essential Question: How do we solve real-world problems using a system of linear inequalities?

Do Now:

Sergio is building a garden. He wants the length of the garden to be at least 30 feet and the perimeter of the garden to be no more than 100 feet.

Write a system of linear inequalities that represents the situation described. Let \boldsymbol{x} represent the length of the garden and let \boldsymbol{y} represent the width.

MODELING WITH SYSTEMS OF INEQUALITIES

There are many situations that arise in business and engineering that necessitate the use of a system of linear inequalities. The region in the coordinate plane that solves the system represents all of the possible solutions to the problem.

Example 1:

Sergio is building a garden. He wants the length of the garden to be at least 30 feet and the perimeter of the garden to be no more than 100 feet. Let \boldsymbol{x} represent the length of the garden and let \boldsymbol{y} represent the width.
(a) Using the system you created in the Do Now, determine all the possible dimensions of the garden by graphing the system.

(b) Is a length of 35 feet and a width of 10 feet a possible combination? How do you know?
(c) State another set of dimensions possible for the garden.

Example 2:

Paul works \boldsymbol{x} hours a week at a bagel shop that pays $\$ 6$ an hour. He has also accepted a job that pays $\$ 12$ an hour mowing lawns for \boldsymbol{y} hours a week. He will work both jobs. Paul wants to earn at least $\$ 120$ a week, but due to school commitments, he must work less than 30 hours a week.
(a) Write a system of inequalities that describes the situation. Graph the system.

(b) Determine and state one combination of hours that will allow Paul to earn at least $\$ 120$ per week while working less than 30 hours.

Systems of Linear Inequalities help us develop solution sets to different types of problems. When developing a system, use two \qquad to represent two different quantities. Write two \qquad that describe the situation.

The solution set to the problem is represented by the ordered pairs shown in the region where both graphs \qquad .

Example 3:

The Royal Crown Players of Roslyn High School are raising money for their club by putting on a production of The Music Man. They have 500 seats in the auditorium. They are selling student tickets for $\$ 5$ each and nonstudent tickets for $\$ 10$ each. They must sell at least $\$ 2000$ worth of tickets to cover their expenses.
(a) If \boldsymbol{x} represents the number of student tickets sold and \boldsymbol{y} represents the number of non-student tickets sold, write a system of inequalities that can be used to model this situation. Graph the system.

(b) List two possible combinations of student and non-student tickets that must be sold to cover the club's expenses.
(c) Will the club cover their expenses if they sell 150 student tickets and 100 non-student tickets? Justify your response.

IT'S YOUR TURN NOW!

Karen likes her job as a babysitter, but it pays only $\$ 5$ per hour. She has been offered a job as a tutor that pays $\$ 10$ per hour. Because of school work, her parents only allow her to work a maximum of 20 hours per week. How many hours can Karen tutor and babysit if she wants to earn at least $\$ 100$ per week?
(a) Write a system of inequalities that can be used to answer the question. Use \boldsymbol{x} to represent the number of hours Karen babysits and \boldsymbol{y} to represent the number of hours Karen tutors.
(b) Graph the system.

(c) Determine and state one solution that would allow Karen to work a maximum of 20 hours while making at least $\$ 100$ in one week. Explain your solution in the context of the situation.

