Algebra RH

Essential Question: Is there another algebraic method to solve linear systems algebraically?

Do Now: Use the substitution method to solve the following linear system. *Don't forget to check your solution with both equations.*

4x + 3y = 16 2x - 3y = 8

Solving Linear Systems using the Elimination Method

1.	4x + 3y = 16	2. 3n + m = 2
	2x - 3y = 8	m + 3 = 2n

3. v - w = -5 v + 2w = 4 4. y = x - 14 -x + 8y = 0 Can the following system of equations be solved by using elimination?

2x + 6y = 4 6x + 14y = 12

Procedure for Solving a Linear System using the Elimination Method

Step 1: Arrange the equations so that like terms line up in columns.

Step 2: Decide which variable to eliminate. Look for additive inverse coefficients. (If necessary, multiply one or both of the equations by a number resulting in opposite variable terms).

Step 3: Add the equations and solve for the variable (*Remember*: only one variable should be present in the equation).

Step 4: Substitute the value obtained in step 3 into either of the original equations in order to solve for the other variable.

Step 5: Check the solution in each of the original equations.

More Examples: Solve the linear system using the elimination method.

5. 3x + 5y = 6	6. x + y = 12
-4x + 2y = 5	-3y = 4x - 10

Solve the following systems algebraically using the elimination method. Check your solution.

1.	a + b = 5 a - b = 7	2.	3a - 5b = 31 7a - 5b = 59
3.	6p - 7q = 28 -6p + 3q = -12	4.	4a - 7b = 13 2a - 7b = 3
5.	3c - 8d = 7 c + 2d = -7	6.	x + y = 7 3x - 2y = 11
7.	2n + 5a = 14 6n + 7a = 10	8.	3† - 8z = 34 7† + 4z = -34

9. 4r + 9s = 2310. 18a - 5b = 17-7r + 3s = -346a + 10b = -6