Unit 3 Review: Equations

Write the letter corresponding to the correct answer. Show all necessary work.

1. What is the solution to $3(x-5)=x-1$

$$
3(x-5)=x-1
$$

a) 2
b) 7

$$
\begin{aligned}
3 x-15 & =x-1 \\
+15 & +15 \\
3 x & =x+14 \\
-x & -x
\end{aligned}
$$

c) 0
d) there is no solution

$$
\frac{2 x}{2}=\frac{14}{2}
$$

$$
x=7
$$

2. If $m x-q=d$, then $x=$
a) $d+q+m$
b) $d+q \cdot m$

$$
\begin{gathered}
m x-q=d \\
+q \quad+q
\end{gathered}
$$

$$
\frac{m x}{m}=\frac{d+q}{m}
$$

c) $\frac{d+q}{m}$
d) $\frac{d-q}{m}$
$x=\frac{d+q}{m}$
3. What is the solution to the following equation? $4(x-1)-3 x=-2 x-4+3 x$
a) $x=-4$
b) $x=0$

$$
\begin{aligned}
4(x-1)-3 x & =-2 x-4+3 x \\
4 x-4-3 x & =x-4 \\
x-4 & =x-4
\end{aligned}
$$

c) there is no solution
d) $x=$ all real numbers
infinite solutions (x is all real numbers)
4. Which equation has the same solution set as $\frac{1}{2}(6-x)+3 x=\frac{1}{2} x-8$?
a) $6-x+6 x=x-8$

$$
\frac{1}{2}(6-x)+3 x=\frac{1}{2} x-8
$$

b) $6-x+3 x=x-16$

$$
3-\frac{1}{2} x+\frac{6}{2} x=\frac{1}{2} x-8
$$

c) $3+\frac{5}{2} x=\frac{1}{2} x-8$

$$
3+\frac{5}{2} x=\frac{1}{2} x-8
$$

d) $6+2 x=x-8$

Solve for x. Show all necessary work.
5. $-2+3 x=13$
6. $-3 x-4+x-6=-18$
7. $5 x-4=3 x+10$

$$
\begin{array}{rl}
-2+3 x & =13 \\
+2 & +2 \\
\underline{3 x} & =\underline{15} \\
3 & 3 \\
\boldsymbol{x} & =\mathbf{5}
\end{array}
$$

$$
\begin{aligned}
-3 x-4+x-6 & =-18 \\
-2 x-10 & =-18 \\
+10 & +10 \\
-2 x & =-\underline{8} \\
-2 & -2 \\
x & =\mathbf{4}
\end{aligned}
$$

9. $1 / 2(4 x-6)-17=0$
10. $\frac{2 x+4}{7}=-2$

$$
\begin{array}{rl}
\frac{1}{2}(4 x-6)-17 & =0 \\
2 x-3-17 & =0 \\
2 x-20 & =0 \\
+20 & +20 \\
\underline{2 x} & =\underline{20} \\
2 & 2
\end{array}
$$

$$
\begin{gathered}
5 x-4=3 x+10 \\
+4 \quad+4 \\
5 x=3 x+14 \\
-3 x \quad-3 x \\
\underline{2 x}=\frac{14}{2} \\
x=7
\end{gathered}
$$

$$
\begin{gathered}
3(5 x-10)=-5 x \\
15 x-30=-5 x \\
-15 x \quad-15 x
\end{gathered}
$$

8. $3(5 x-10)=-5 x$
$-30=-20 x$
-20 -20
$\frac{3}{2}=x$
or

$$
\frac{2 x+4}{7}=\frac{-2}{1}
$$

$$
2 x+4=-14
$$

$$
-4 \quad-4
$$

$$
\underline{2 x}=-18
$$

$$
\begin{array}{lr}
2 \\
\boldsymbol{x}=-\boldsymbol{9}
\end{array}
$$

$$
x=10
$$

Solve for the indicated variable. Show all necessary work.
11. $\mathbf{A}=\mathbf{P}+$ Prt for \mathbf{t}
$\mathrm{A}=\mathrm{P}+\mathrm{Prt}$
$-\mathrm{P} \quad-\mathrm{P}$

$$
\underbrace{\mathrm{A}-\mathrm{P}}_{\operatorname{Pr}}=\underset{\mathrm{Pr}}{\mathrm{Prt}}
$$

$$
\frac{A-P}{P r}=t
$$

12. $\frac{m}{n}=\frac{p}{q}$ for p
$\frac{m}{n}=\frac{p}{q}$
$\underline{m q}=\underline{p n}$
$n \quad n$

$$
\frac{m q}{n}=p
$$

13. The formula used to find the area of a trapezoid is $A=1 / 2 h\left(b_{1}+b_{2}\right)$. Solve this formula for h.

$$
\begin{aligned}
& A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& 2 \cdot \mathrm{~A}=2 \cdot \frac{1}{2} \mathrm{~h}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right) \\
& \underline{2 \mathrm{~A}}=\underline{\mathrm{h}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right)} \\
& \left(\mathrm{b}_{1}+\mathrm{b}_{2}\right)
\end{aligned}
$$

$$
\frac{2 A}{b_{1}+b_{2}}=h
$$

14. Solve each equation below.

$$
\begin{aligned}
& \text { a. } \frac{x-2}{4}+\frac{1}{3}=\frac{7}{3} \\
& \text { b. } \frac{3 a}{5}-\frac{a}{2}=\frac{1}{20} \\
& 12\left(\frac{x-2}{4}+\frac{1}{3}\right)=12\left(\frac{7}{3}\right) \\
& 1 / 2^{3}\left(\frac{x-2}{4}\right)+1 / 2^{4}\left(\frac{1}{8}\right)=1 / 2^{4}\left(\frac{7}{3}\right) \\
& 3(x-2)+4(1)=4(7) \\
& 3 x-6+4=28 \\
& 3 x-2=28 \\
& \begin{array}{l}
+2 \\
\frac{3 x}{3}=\frac{30}{3}
\end{array} \\
& x=10 \\
& 20\left(\frac{3 a}{5}-\frac{a}{2}\right)=20\left(\frac{1}{20}\right) \\
& 20^{4}\left(\frac{3 a}{8}\right)-20^{10}\left(\frac{a}{2}\right)=20^{1}\left(\frac{1}{20}\right) \\
& 4(3 a)-10(a)=1(1) \\
& 12 a-10 a=1 \\
& \frac{2 a}{2}=\frac{1}{2} \\
& a=1 / 2 \\
& \text { c. } \frac{x}{3}-1=\frac{x}{2}+3 \\
& 6\left(\frac{x}{3}-1\right)=6\left(\frac{x}{2}+3\right) \\
& \sigma^{2}\left(\frac{x}{3}\right)-6(1)=\sigma^{3}\left(\frac{x}{2}\right)+6(3) \\
& 2(x)-6(1)=3(x)+6(3) \\
& 2 x-6=3 x+18 \\
& \begin{array}{ll}
-2 x & -2 x \\
-6= & x+18
\end{array} \\
& \begin{array}{ll}
-6 & -18 \\
-18
\end{array} \\
& -24=x
\end{aligned}
$$

15. The formula $\mathbf{T}=\mathbf{p}+\mathbf{s p}$ gives the total cost of an item with price \mathbf{p} and sales tax \mathbf{s}, expressed as a decimal.
A. Solve this formula for \mathbf{s}.

$$
\begin{aligned}
& \mathrm{T}=\mathrm{p}+\mathrm{sp} \\
& -p-p
\end{aligned}
$$

$$
\frac{\mathrm{T}-\mathrm{p}}{p}=\underset{p}{\mathrm{~s} \mathrm{p}}
$$

$$
\frac{T-p}{p}=s \text { or } \frac{T}{p}-1=s
$$

B. The total cost of a sweater, including tax, is $\$ 25.32(\mathbf{T})$. Calculate the sales tax (\mathbf{s}) if the ticket price of the sweater is $\$ 24(\mathbf{p})$. Represent the tax as a percent.

$$
\frac{T-p}{p}=s
$$

$$
\frac{25.32-24}{24}=s
$$

16. Examine the literal equation below that has been solved for \boldsymbol{x}. For each step taken, name the property of equality that was applied.

$$
\begin{aligned}
& a x+b=c \\
& a x=c-b \quad \text { Subtraction Property of Equality } \\
& x=\frac{c-b}{a} \quad \text { Division Property of Equality } \\
& \begin{array}{r}
a x+b=c \\
-b
\end{array} \\
& \underset{a}{a x}=\frac{c-b}{a} \\
& x=\frac{c-b}{a}
\end{aligned}
$$

