Unit 2 - Polynomial Expressions

Multiple Choice: Write the letter corresponding to the correct answer.

1. If the width of a rectangle is represented by \boldsymbol{w} and the length is 2 units more than the width, express the perimeter of the rectangle in terms of w.
a) $2 w+2$
b) $4 w+2$
c) $4 w+4$
d) $w(w+2)$
$2(w)+2(w+2)$
$2 w+2 w+4$
$4 w+4$
2. What is the total number of calories in x peanuts and y potato chips if each peanut contains 6 calories and each potato chip contains 14 calories?
a) $20 x y$
b) $20(x+y)$
c) $14 x+6 y$
d) $6 x+14 y$
3. A kennel has d dogs and c cats. How many more cats are there than dogs?

More cats ... Start with cats Subtract dogs
a) $c+d$
b) $d-c$
c) $c d$
d) $c-d$

Which expression is not equivalent to $\frac{2}{3}(6 x+4)$?
a) $3\left(\frac{4}{3} x+\frac{8}{9}\right)$
b) $2\left(2 x+\frac{4}{3}\right)$
c) $4 x+4 \frac{2}{3}$

Use the distributive property $\longrightarrow 4 x+\frac{8}{3}$

$$
4 x+\frac{8}{3}
$$

$$
4 x+\frac{14}{3}
$$

$$
4 x+\frac{8}{3}
$$

d) $4 x+2 \frac{2}{3} \quad 4 x+\frac{8}{3}$

$$
\begin{aligned}
& \frac{2}{3}(6 x+4) \\
& 4 x+\frac{8}{3}
\end{aligned}
$$

Perform the indicated operation. Write your answer as a simplified polynomial expression in standard form.
5. $(3 a-4 b+5 c)+(2 a-5 b)+(-5 a-2 c)$
6. $\left(2 y^{3}-6 y\right)-\left(2 y+y^{3}\right)$
$3 a-4 b+5 c+2 a-5 b-5 a-2 c$
$3 a+2 a-5 a-4 b-5 b+5 c-2 c$

$$
-9 b+3 c
$$

$$
\begin{gathered}
2 y^{3}-6 y-2 y-y^{3} \\
2 y^{3}-y^{3}-6 y-2 y \\
y^{3}-8 y
\end{gathered}
$$

7. $\left(6 x^{3}+7 x\right)-\left(-3 x^{2}+5\right)+\left(x^{2}-10 x-1\right)$
$6 x^{3}+7 x+3 x^{2}-5+x^{2}-10 x-1$
$6 x^{3}+3 x^{2}+x^{2}+7 x-10 x-5-1$
$6 x^{3}+4 x^{2}-3 x-6$
8. Subtract $9 x-1$ from $4 x^{2}-2 x+3$
$\left(4 x^{2}-2 x+3\right)-(9 x-1)$
$4 x^{2}-2 x+3-9 x+1$
$4 x^{2}-2 x-9 x+3+1$
9. | $\left(3 x^{2} y^{3}\right)\left(-10 x y^{4}\right)$ |
| :---: |
| $-30 x^{3} y^{7}$ |
10. $3 x^{2}(2 x+7)$

$x \quad-3$

x	x^{2}	$-3 x$
+5	$+5 x$	-15

Applications with Polynomials:

13. The area of a rectangle $A B C D$ is $2 x^{2}+17 x+30$ square units. The area of rectangle EFGH is $x^{2}-x-6$ square units. Express the area of the shaded region as a simplified polynomial expression written in standard form.

Area of large rectangle - Area of small rectangle $=$ Area of shaded region
$\left(2 x^{2}+17 x+30\right)-\left(x^{2}-x-6\right)$
$2 x^{2}+17 x+30-x^{2}+x+6$
$\frac{2 x^{2}-x^{2}+17 x+x+30+6}{x^{2}+18 x+36 \text { square units }}$

14. The length of a rectangular billboard is three feet less than twice its width, \boldsymbol{w}. Express the area of the billboard as a simplified polynomial expression written in standard form.

Area $=$ length x width

$$
\begin{aligned}
& w=\text { width } \\
& 2 w-3=\text { length }
\end{aligned}
$$

$$
\frac{w(2 w-3)}{2 w^{2}-3 w \text { square feet }}
$$

15. The ages of three friends in a band are represented by three consecutive even integers. If the youngest band member's age is represented by a, express the sum of the ages of the friends as a simplified polynomial expression written in standard form.
$a=$ age of the youngest band member
$a+2=$ age of the middle band member
$3 a+(a+2)+(a+4)$ $a+4=$ age of the oldest band member
