Square Root
a) $\frac{3 x^{2}}{3}=\frac{27}{3}$
$x^{2}=9$
$\sqrt{x^{2}}= \pm \sqrt{9}$
$x= \pm 3$
$x=\{3,-3\}$

Factor

$$
\text { b) } \begin{gathered}
2 x^{2}-12 x=-16 \\
2 x^{2}-12 x+16=0 \\
2\left(x^{2}-6 x+8\right)=0 \\
2(x-4)(x-2)=0 \\
x-4=0 \quad x-2=0 \\
x=4 \quad x=2 \\
x=\{4,2\}
\end{gathered}
$$

Factor

$$
\text { c) } \begin{gathered}
x^{2}-5 x=0 \\
x(x-5)=0 \\
x=0 \quad x-5=0 \\
x=0 \quad x=5 \\
x=\{0,5\}
\end{gathered}
$$

Square Root
d) $\frac{8(x-4)^{2}}{8}=\frac{200}{8}$

Factor
e) $x(x+3)=40$
$\begin{aligned}(x-4)^{2} & =25 \\ \sqrt{(x-4)^{2}} & = \pm \sqrt{25}\end{aligned}$

$$
x-4= \pm 5
$$

$x-4=5 \quad x-4=-5$

$$
x=9 \quad x=-1
$$

$$
x=\{9,-1\}
$$

2) $\boldsymbol{x}: 1^{\text {st }}$ negative consecutive integer
$x+1: 2^{\text {nd }}$ negative consecutive integer (-6)

$$
\begin{gathered}
x^{2}+2(x+1)=37 \\
x^{2}+2 x+2=37 \\
x^{2}+2 x-35=0 \\
(x+7)(x-5)=0 \\
x+7=0 x-5=0 \\
x=-7 \quad x=5
\end{gathered}
$$

Reject 5 because it's a positive integer

Factor
f) $\frac{x}{5}=\frac{3}{x+2}$

$$
x(x+2)=(3)(5)
$$

$$
x^{2}+2 x=15
$$

$$
x^{2}+2 x-15=0
$$

$$
(x+5)(x-3)=0
$$

$$
x+5=0 \quad x-3=0
$$

$$
x=-5 \quad x=3
$$

$$
x=\{-5,3\}
$$

3) x : width (4 inches) $2 x+4$: length (12 inches)

$$
\begin{aligned}
& x(2 x+4)=48 \\
& 2 x^{2}+4 x=48 \\
& 2 x^{2}+4 x-48=0 \\
& 2\left(x^{2}+2 x-24\right)=0 \\
& 2(x+6)(x-4)=0 \\
& x+6=0 \quad x-4=0 \\
& x=-8 \quad x=4
\end{aligned}
$$

Reject -6 because a width cannot be a negative number
4) x : width of the frame
[----------2x + 8-----------]

$$
\begin{gathered}
(2 x+8)(2 x+10)=120 \\
4 x^{2}+20 x+16 x+80=120 \\
4 x^{2}+36 x+80=120 \\
4 x^{2}+36 x-40=0 \\
4\left(x^{2}+9 x-10\right)=0 \\
4(x+10)(x-1)=0 \\
x+10=0 \quad x-1=0 \\
x=-10 \quad x=1
\end{gathered}
$$

Reject -10 because the width of a frame cannot be a
 negative number

The width of the frame is 1 inch

5) $2 x^{2}-6 x+3=0$
$a=2, b=-6, c=3$
6) $x^{2}+6 x-6=0$
$x^{2}+6 x=6$
$(6 / 2)^{2}$
$x^{2}+6 x+\ldots=6+\ldots \quad 3^{2}=9$
$x^{2}+6 x+9=6+9$
$(x+3)^{2}=15$
$\sqrt{(x+3)^{2}}= \pm \sqrt{15}$

$$
x+3= \pm \sqrt{15}
$$

$x=\frac{6 \pm \sqrt{12}}{4} \longrightarrow \sqrt{12}=\sqrt{4} \cdot \sqrt{3}$
$=2 \sqrt{3}$$\quad \begin{aligned} & x=\frac{6 \pm 2 \sqrt{3}}{4}\end{aligned}$

$$
x=-3 \pm \sqrt{15}
$$

$$
x=\{-3-\sqrt{15},-3+\sqrt{15}\}
$$

$x=\frac{3 \pm \sqrt{3}}{2}$
$x=\frac{3+\sqrt{3}}{2} \quad x=\frac{3-\sqrt{3}}{2}$

