Unit 14 Practice ANSWER KEY

Let's Review - Use your notes from Monday and Tuesday to help you solve the equations below.

| Solve $-2 x^{2}+24 x-46=0$ | by completing the square. |
| :--- | :--- | Solve $-x^{2}+5=2 x$ using the quadratic formula.

$$
\begin{aligned}
& \frac{-2 x^{2}}{-2}+\frac{24 x}{-2}-\frac{46}{-2}=\frac{0}{-2} \\
& x^{2}-12 x+23=0 \\
& \left.x^{2}-12 x+\frac{}{<}=-23+\frac{-12}{2}\right)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36=-23+36
$$

$$
(x-6)^{2}=13
$$

$$
\sqrt{(x-6)^{2}}=\sqrt{13}
$$

$$
x-6= \pm \sqrt{13}
$$

$$
x=6 \pm \sqrt{13}
$$

$$
\{6+\sqrt{13}, 6-\sqrt{13}\}
$$

$$
\begin{aligned}
& -x^{2}+5=2 x \\
& -x^{2}-2 x+5=0
\end{aligned}
$$

$$
a=-1
$$

$$
\begin{aligned}
& b=-2 \\
& c=5
\end{aligned} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(-1)(5)}}{2(-1)}
$$

$$
x=\frac{2 \pm \sqrt{24}}{-2}
$$

$$
x=\frac{2 \pm \sqrt{4} \sqrt{6}}{-2}
$$

$$
x=\frac{2 \pm 2 \sqrt{6}}{-2}
$$

$$
x=-1 \pm \sqrt{6}
$$

$$
\{-1+\sqrt{6},-1-\sqrt{6}\}
$$

All irrational solutions must be expressed in simplest radical form.

1. $2 x^{2}+18 x=-16$

$$
\left.\begin{array}{r}
2 x^{2}+18 x+16=0 \\
2\left(x^{2}+9 x+8\right)=0 \\
2(x+8)(x+1)=0 \\
\hline x+8=0 \\
x+1=0 \\
x=-8
\end{array} \right\rvert\, \begin{array}{r}
x=-1
\end{array}
$$

$\{-8,-1\}$
2. $3 x^{2}+5=152$

$$
\begin{aligned}
3 x^{2} & =147 \\
\frac{3 x^{2}}{3} & =\frac{147}{3} \\
x^{2} & =49 \\
\sqrt{x^{2}} & =\sqrt{49} \\
x & = \pm 7
\end{aligned}
$$

$\{-7,7\}$
3. $4 x^{2}+4 x-9=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$b=4$
$c=-9$

$$
x=\frac{-4 \pm \sqrt{(4)^{2}-4(4)(-9)}}{2(4)}
$$

$$
x=\frac{-4 \pm \sqrt{160}}{8}
$$

$$
x=\frac{-4 \pm \sqrt{16} \sqrt{10}}{8}
$$

$$
x=\frac{-4 \pm 4 \sqrt{10}}{8}
$$

$$
x=\frac{-1 \pm \sqrt{10}}{2}
$$

4. $10 x^{2}+2 x=0$

$2 x(5 x+1)=0$	
$2 x=0$	$5 x+1=0$
$x=0$	$5 x=-1$
	$x=-\frac{1}{5}$

$\{0,-1 / 5\}$
5. $x^{2}-10 x+15=8$

$x^{2}-10 x+\ldots$	$=-7+\ldots$		
$x^{2}-10 x+25$	$=-7+25$		
$x^{2}-10 x+25$	$=18$	$\left(\frac{-10}{2}\right)^{2}$	$\frac{6 x^{2}}{6}$ $=\frac{300}{6}$ $(x-5)^{2}$ $=18$ $\sqrt{(x-5)^{2}}$ $=\sqrt{18}$ $x-5$ $= \pm \sqrt{9} \sqrt{2}$ x $=5 \pm 3 \sqrt{2}$
$\sqrt{x^{2}}$	$=\sqrt{50}$		
x	$= \pm \sqrt{25} \sqrt{2}$		
x	$= \pm 5 \sqrt{2}$		
	$\{5 \sqrt{2},-5 \sqrt{2\}}$		

7. Meredith is deciding which method to use to solve $5 x^{2}-7 x-6=0$. Jeremy says that she should complete the square and Greg says she should use the quadratic formula. Who do agree with? Explain your reasoning and justify your response.

I would use the quadratic formula. If I used the method of completing the square, you would have to divide each term by 5 and get a number of fractions that would be more complex to work with.

$$
\begin{array}{llll}
5 x^{2}-7 x-6=0 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & x=\frac{7 \pm \sqrt{169}}{10} & \\
& x=5 & x=\frac{7 \pm \sqrt{(-7)^{2}-4(5)(-6)}}{2(5)} & x=\frac{7 \pm 13}{10} \\
b=-7 & & x=\frac{7+13}{10} & x=\frac{7-13}{10} \\
c=-6 & & x=2 & x=-\frac{3}{5}
\end{array}
$$

8. A student was given the equation $x^{2}+6 x-13=0$ to solve by completing the square.

The first step that was written was

$$
x^{2}+6 x=13
$$

The next step in the student's process was $\quad x^{2}+6 x+c=13+c$.

State the value of c that creates a perfect square trinomial. Explain how the value of c is determined.
Take the coefficient of the middle term, divide it by 2 and square that result, $\mathrm{c}=9$

$$
\left(\frac{6}{2}\right)^{2}=9
$$

9. Sally and Jane have ages that are consecutive even integers. The product of their ages is 168 . Write an equation that could be used to find Sally's age, s, if she is the oldest. Solve your equation and state the age of Sally.

$$
\begin{aligned}
& s=\text { Sally's age } \\
& s-2=14 \text { years old }
\end{aligned}
$$

$$
s(s-2)=168
$$

$$
s^{2}-2 s=168
$$

$$
s^{2}-2 s-168=0
$$

$$
\begin{array}{c|c}
(s-14)(s+12)=0 \\
\hline s-14=0 & s+12=0
\end{array}
$$

$$
\begin{array}{l|l}
s=14 & \begin{array}{l}
s=-12 \\
\text { Reject }-
\end{array}
\end{array}
$$

age cannot
be negative
10. The dimensions of a rectangular garden are 5 meters by 12 meters. In order to create a bigger rectangular garden, each dimension was increased by the same amount. The new garden's area is double that of the original garden. Find the dimensions of the new garden. Draw a diagram to help you.
12

$x=$ number of meters added to each dimension
A = length • width

Area of original garden $=60 \mathrm{~m}^{2}(5 \cdot 12)$
Area of new garden $=120 \mathrm{~m}^{2}(60 \cdot 2)$

$$
\left.\begin{array}{c}
(12+x)(5+x)=120 \\
60+12 x+5 x+x^{2}=120 \\
x^{2}+17 x-60=0 \\
(x+20)(x-3)=0 \\
\hline x+20=0
\end{array}\right) x-3=0 \quad \begin{gathered}
x=3
\end{gathered}
$$

$$
12+3=15 m
$$

$$
5+3=8 m
$$

The dimensions of the new garden are 15 meters by 8 meters.
11. A decorator places a rug in a 9 meter by 12 meter room. A uniform strip of flooring around the rug remains uncovered. Write and solve an equation to determine the width, x meters, of the strip of flooring if the area of the rug is half the area of the room. Find the length and width of the rug.

Helpful Hint: The key to solving this problem is setting up an equation that represents the area of the ruq. First, represent the length and width of the rug algebraically.

$$
\begin{aligned}
& 12-x-x \rightarrow 12-2 x=\text { length of the rug }=9 \text { meters } \\
& 9-x-x \rightarrow 9-2 x=\text { width of the rug }=6 \text { meters }
\end{aligned}
$$

> A = length • width

Area of room $=108 \mathrm{~m}^{2}(9 \cdot 12)$
Area of rug $=54 \mathrm{~m}^{2}(108 \cdot 1 / 2)$

$$
\begin{aligned}
& (12-2 x)(9-2 x)=54 \\
& 108-24 x-18 x+4 x^{2}=54 \\
& 108-42 x+4 x^{2}=54 \\
& 4 x^{2}-42 x+54=0 \\
& \frac{4 x^{2}}{2}-\frac{42 x}{2}+\frac{54}{2}=0 \\
& 2 x^{2}-21 x+27=0
\end{aligned}
$$

$$
\begin{aligned}
& a=2, b=-21, c=27 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{21 \pm \sqrt{(-21)^{2}-4(1)(27)}}{2(2)} \\
& x=\frac{21 \pm \sqrt{225}}{4} \\
& x=\frac{21 \pm 15}{4} \\
& x=\frac{21+15}{4} \quad x=\frac{21-15}{4} \\
& x=9 \quad x=1.5
\end{aligned}
$$

width of the rug $=9-2 x$

$x=9$	$x=1.5$
$9-2 x$	$9-2 x$
$9-2(9)$	$9-2(1.5)$
$9-18$	$9-3$
-9	6 meters
reject	
negative	$12-2 x$
measurement $12-2(1.5)$	
	$12-3$
	9 meters

12. New Clarendon Park is undergoing renovations to its gardens. One garden that was originally a square is being adjusted so that one side is doubled in length, while the other side is decreased by three meters.

Part A: Represent the dimensions of the two gardens algebraically. Use the diagrams below to help you. Let $\mathrm{x}=$ the side length of the original square garden.

Part B: Represent the area of the original square garden in terms of \mathbf{x}.

$$
\begin{aligned}
& \mathrm{A}=\text { length } \bullet \text { width } \\
& \mathrm{A}=x \cdot x \\
& \mathrm{~A}=x^{2}
\end{aligned}
$$

Part C: Represent the area of the rectangular garden in terms of \mathbf{x}.

$$
\begin{aligned}
& \mathrm{A}=\text { length } \cdot \text { width } \\
& \mathrm{A}=2 x(x-3) \\
& \mathrm{A}=2 x^{2}-6 x
\end{aligned}
$$

Part D: The new rectangular garden will have an area that is 25% more than the original square garden. Write an equation that can be used to determine the length of a side of the original square garden, \mathbf{x}. Solve your equation and state the side length.
See the helpful hint box below to help you make sense of a 25% increase.

$$
\begin{aligned}
& \text { new garden }=1.25 \text { • original garden } \\
& \qquad \begin{aligned}
2 x^{2}-6 x & =1.25 x^{2} \\
0.75 x^{2}-6 x & =0 \\
x(0.75 x-6) & =0
\end{aligned} \\
& \hline x=0 \quad \begin{aligned}
& 0.75 x-6=0 \\
& 0.75 x=6 \\
& x=8
\end{aligned} \\
& \text { Seject - } \\
& \text { measure } \\
& \text { of zero }
\end{aligned}
$$

Helpful Hint: Think about what percent a new amount represents after it has been increased by 25%.

Example:

Original Amount: 10
25\% Increase: .25(10) = 2.5
New Amount: $10+2.5=\mathbf{1 2 . 5}$
$\mathbf{1 0 . 0} \leftarrow \mathbf{1 0 0 \%} \quad$ If p is increased by 25% then $\mathbf{1 . 2 5 p}$ represents the new amount
$+2.5 \leftarrow 25 \%$
$12.5 \leftarrow 125 \%$

New Amount $=125 \%$ of the Original Amount
New Amount = 1.25(10)
New Amount = $\mathbf{1 2 . 5}$ after a 25% increase.

