PIPS

LITERAL EQUATIONS

1) Consider the literal equation $a x+b=c$ When solving, justify solution steps. Use as many lines as needed.
(a) Solve for \boldsymbol{b} in terms of $\boldsymbol{a}, \boldsymbol{c}$ and \boldsymbol{x} $a x+b=c$
$-a x \quad-a x$
$b=c-a x$
Subtraction Property of Equality
(b) Solve for \boldsymbol{x} in terms of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}
$a x+b=c$
$-b \quad-b$
$a x=c-b$
Subtraction Property of Equality
$a \quad a$
$x=\frac{c-b}{a} \quad$ Division Property of Equality
(c) Solve for \boldsymbol{a} in terms of $\boldsymbol{b}, \boldsymbol{c}$ and \boldsymbol{x}
$a x+b=c$

$$
-b \quad-b
$$

$a x=c-b \quad$ Subtraction Property of Equality
$\bar{x} \quad-$
$a=\frac{c-b}{x}$
Divison Property of Equality
2)
(a) Solve the literal equation $a x+a b=c$ for x.

$$
\begin{aligned}
& a x+a b=c \\
&-a b-a b \\
& \frac{a x}{a}=c-a b \\
& a
\end{aligned}
$$

(b) Show another way to solve $a x+a b=c$ for x. (Hint: "Undistribute" a).

$$
a x+a b=c
$$

$$
\frac{a(x+b)}{a}=c \quad \leftarrow \text { undistribute } a
$$

$$
x+b=\frac{c}{a}
$$

$$
-b \quad-b
$$

$$
x=\frac{c}{a}-b
$$

(c) Compare and contrast your results in parts (a) and (b).
$x=\frac{c-a b}{a}$

$$
x=\frac{c}{a}-b
$$

$\begin{array}{ll}x=\frac{c}{a}-\frac{a b}{a} & \text { The solutions are the same. In part (a), } \\ x=\frac{c}{a}-b & \text { Ine solution is a binomial divided by } a . \\ & \text { (b), the solution is part (a) after }\end{array}$ each term was divided by a (see work).
3) (a) Amanda has a rectangular fish aquarium that holds $1,280 \mathrm{in}^{3}$ of water. The length of the aquarium is 16 inches and the height is 10 inches. What is the width of the aquarium? (Hint: $\boldsymbol{V}=\boldsymbol{l} \boldsymbol{w} \boldsymbol{h}$)

$$
\begin{aligned}
V & =l w h \\
1280 & =(16)(10) w \\
1280 & =160 w \\
8 \text { inches } & =w
\end{aligned}
$$

(b) Create a formula which could be used to find the width, w, of any rectangular prism.

$$
\mathbf{V}=\mathrm{I} \mathbf{w h} \rightarrow \mathbf{w}=\frac{\mathbf{v}}{\mathbf{l} \mathbf{h}}
$$

4) Consider the formula used to find the missing side of a right triangle (The Pythagorean Theorem).

$$
a^{2}+b^{2}=c^{2}
$$

Hint: The inverse operation of squaring $\left(x^{2}\right)$ is taking the square root $\sqrt{ }$.
(a) Solve the equation for c.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \sqrt{a^{2}+b^{2}}=\sqrt{c^{2}} \\
& \sqrt{a^{2}+b^{2}}=c
\end{aligned}
$$

(b) Solve the equation for b.

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
-a^{2} \\
-a^{2} \\
b^{2}=c^{2}-a^{2} \\
\sqrt{b^{2}}=\sqrt{c^{2}-a^{2}} \\
b=\sqrt{c^{2}-a^{2}}
\end{gathered}
$$

5) (a) Sara is going to paint a circular piece of wood for the set of her school play. If the area of the wood is 36π, then what is the radius? (Hint: $A=\pi r^{2}$)

$$
\begin{aligned}
A & =\pi r^{2} \\
36 \pi & =\pi r^{2} \\
36 & =r^{2} \\
\sqrt{36} & =\sqrt{r^{2}} \rightarrow 6=r
\end{aligned}
$$

(b) Create a formula which could be used to find the radius of any circle.
$A=\pi r^{2} \rightarrow \frac{A}{\pi}=r^{2} \rightarrow \sqrt{\frac{A}{\pi}}=r$
6) How does the solution of a literal equation differ from the solution of a specific equation? (Hint: Think about $a x+b=c$ vs. $2 x+3=10$)

The solution to a literal equation is an expression. It contains numbers, variables and operations. The solution to a specific equation is a numerical value.
$a x+b=c \rightarrow x=\frac{c-b}{a} \quad 2 x+3=10 \rightarrow x=3.5$

