\qquad

1. (2)
2. (4)
3. (3)
4. $x: \quad 1^{\text {st }}$ integer $\{-34$ and -33$\}$

$$
x+1: \quad 2^{\text {nd }} \text { integer }
$$

5. $x: \quad 1^{\text {st }}$ integer $\{10,11,12\}$
$x+1: \quad 2^{\text {nd }}$ integer
$x+2: \quad 3^{\text {rd }}$ integer
$x+(x+1)+(x+2)=9+2(x+2)$
$3 x+3=9+2 x+4$
$3 x+3=13+2 x$
$x+3=13$
$x=10$
6. $x: \quad 1^{\text {st }}$ integer $\{22,24\}$
$x+2: \quad 2^{\text {nd }}$ integer
$2 x-20=x+2$
$x-20=2$

$$
x=22
$$

7. Yes

Sally:
$\mathrm{n}: \quad 1^{\text {st }}$ integer (13)
$n+1: \quad 2^{\text {nd }}$ integer (14)
$n+2: \quad 3^{\text {rd }}$ integer (15)
$n+(n+1)+(n+2)=42$
$3 n+3=42$
$3 n=39$
$n=13$
$\{13,14,15\}$

Jerry:
$n-5: \quad 1^{\text {st }}$ integer ($18-5=13$)
$n-4: \quad 2^{\text {nd }}$ integer $(18-4=14)$
$n-3: \quad 3^{\text {rd }}$ integer $(18-3=15)$
$(n-5)+(n-4)+(n-3)=42$
$3 n-12=42$
$3 n=54$
$n=18$
$\{13,14,15\}$

They will get the same result as shown above. Sally and Jerry defined the unknowns differently but represented the same relationship.

