(1) Write a sequence that represents the number of smiley faces in each group. Is the sequence arithmetic? Explain.

$4,6,8,10, \ldots$
Yes, this sequence is an arithmetic sequence because there is a common difference of 2.
(2) Use the figure to complete the table and plot the points.

models the pattern displayed by the figure.

$$
\begin{aligned}
& a_{1}=10 \quad a_{n}=10+10(n-1) \\
& d=10 \\
& \mathbf{y}=\mathbf{1 0}+\mathbf{1 0}(\mathbf{n}-\mathbf{1})
\end{aligned}
$$

(3) A carnival charges $\$ 2$ for each game after you pay a $\$ 5$ entry fee.
(a) Write a function rule that represents the situation.

$$
a_{n}=5+2 n \quad \text { or } \quad a_{n}=7+2(n-1)
$$

(b) Graph the function.

\mathbf{n}	$\mathbf{a}_{\mathbf{n}}$
0	5
1	7
2	9
3	11
4	13

$\leftarrow \mathrm{a}_{0}$ (y -intercept)
$\leftarrow \mathrm{a}_{1}$ ($1^{\text {st }}$ term)
(c) How many games can you play when you take $\$ 29$ to the carnival?

You can play 12 games when you have \$29.

$a_{n}=7+2(n-1)$	
$29=7+2(n-1)$	
$29=7+2 n-2$	
$29=5+2 n$	$a_{n}=5+2 n$
$29=5+2 n$	
$12=n$	$24=2 n$
$12=n$	

